
Praat scripting manual
(workshop) for beginners

v. 1.8 – January, 2015

mauricio figueroa

www.mauriciofigueroa.cl

http://www.mauriciofigueroa.cl


This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/4.
0/.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Contents

1 Introduction 4

2 Preparatory work: installing software 4

3 Praat environment and objects in Praat 4
3.1 How does the Praat Objects window work? . . . . . . . . . . . . 5
3.2 The link between the object window and a script . . . . . . . . . 7
3.3 How to read and write Praat scripts using Sublime Text . . . . . 8

4 What’s a script and what’s a better script 9
4.1 So, what’s a script? . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 How to write a good script? . . . . . . . . . . . . . . . . . . . . . 10

5 Variable usage 13

6 Controlling the flow: jumps and loops 16
6.1 Conditional jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2.1 For loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.2 While loops . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.3 Repeat loops . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Some useful functions 22
7.1 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 String functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Testing and debugging techniques 26
8.1 Send stuff (variable values, results) to the Praat Info window . . 26
8.2 Pause a script to observe a given state . . . . . . . . . . . . . . . 29
8.3 Make your script crash if behaved unexpectedly . . . . . . . . . . 30

9 Navigate the bubble and beyond: objects, files, inputs & inter-
actions 31
9.1 A bit more to say about navigating the bubble . . . . . . . . . . 32
9.2 Accessing objects outside the script . . . . . . . . . . . . . . . . . 37
9.3 Interacting with the user: forms; choosing files and directories . . 39
9.4 Include other scripts and procedures . . . . . . . . . . . . . . . . 43

10 Procedures and arrays 45
10.1 Procedures: writing your own functions . . . . . . . . . . . . . . 45
10.2 Arrays: a variable with many coexisting values . . . . . . . . . . 48

11 Where to look for more information? 50

12 Acknowledgements 50

3



1 Introduction

Welcome to this Praat1 scripting manual (workshop) for beginners! In the
following sections we’ll try to cover all the basics that will enable you to read and
write Praat scripts to perform typical tasks, particularly those related to object
manipulation, querying from objects, saving, controlling the flow of information,
etc. I hope that by the end you’ll feel that scripts are your friends2 and that
they can make your life easier and not the other way around.

2 Preparatory work: installing software

In order to be able to work with Praat scripts, you have to install the following
software:

(a) The latest version of Praat:

http://www.fon.hum.uva.nl/praat/download_mac.html (Mac)

http://www.fon.hum.uva.nl/praat/download_win.html (Windows)

http://www.fon.hum.uva.nl/praat/download_linux.html (Linux)

And I recommend you to install the following as well:

(b) Sublime Text 23:

http://www.sublimetext.com/2

(c) Praat syntax highlighter for Sublime Text:

https://github.com/mauriciofigueroa/praatSublimeSyntax

3 Praat environment and objects in Praat

To begin with, let’s open Praat. You’ll see that two windows have appeared.
One of those, the most important one, is called the Praat Objects window, and
the other the Praat Picture window. Most of the time, unless you’re planning on
using the Praat Picture window to draw something, I would recommend closing
it to keep your window hygiene4.

The Objects window can be quite unfriendly at first sight. It is sort of empty,
it almost has no buttons because some of the buttons are unavailable for the time

1Boersma, Paul & Weenink, David (2014). Praat: doing phonetics by computer [Computer
program]. Version 5.3.80, retrieved 29 June 2014 from http://www.praat.org/.

2Cf.: http://en.wikipedia.org/wiki/Tsubasa_Oozora
3Although we’ll be using a syntax highlighter for Sublime Text, other syntax highlighting

systems have been designed for other word processors as well, such as this highlighter for
Notepad++ (available for Windows and Linux), this highlighter for Kate (available for Linux)
and this other highlighter for TextMate (available for Mac OS X). Sublime Text is available
for Windows, Linux and Mac OS X.

4The drawing capabilities of Praat are quite neat. For starters, the drawing process can be
scripted, so you don’t have to manually add each element of a drawing each time you redraw.
This is particularly useful when you need to dynamically draw something (for example, when
the drawing depends on a data set that keeps changing or when the drawing depends on the
result of some calculation). Although this workshop does not cover drawing in Praat, check
an example in your files and code folder, called draw example (look for the script called
draw sound.praat).

4

http://www.fon.hum.uva.nl/praat/download_mac.html
http://www.fon.hum.uva.nl/praat/download_win.html
http://www.fon.hum.uva.nl/praat/download_linux.html
http://www.sublimetext.com/2
https://github.com/mauriciofigueroa/praatSublimeSyntax
http://www.praat.org/
http://en.wikipedia.org/wiki/Tsubasa_Oozora
http://sadowsky.cl/praat.html#syntax
http://notepad-plus-plus.org/
https://github.com/jjatria/praatKateSyntax/
http://kate-editor.org/
http://praatpfanne.lingphon.net/praat-ressourcen/resources-english/#plugins
http://macromates.com/


being. It shows five menus by default (unless you’ve added some buttons, which
is possible5): Praat , New , Open, Save and Help. Under Praat, for example,
you can find Praat >New Praat script or Praat >Open Praat script....

TTGYHD 1a (difficulty level: slug): Take a look at some of the options inside
the menus and consider which ones might be more useful for you and/or in
which situations you could use them in your own research scripting situations.

a“TTGYHD” stands for “Time To Get Your Hands Dirty”.

Some of those buttons available that I’ve used quite a lot these years are the
following (but this is highly dependant on the type of tasks you actually do on
Praat!):

New >Record mono Sound. . .
New >Sound >Create Sound from formula. . .
New >Tables >Create Table with column names. . .
New >Create Strings as file list. . .
New >Create Strings as directory list. . .
Open >Read from file. . .
Open >Open long sound file. . .
Open >Read Table from tab-separated file. . .
Open >Read Table from comma-separated file. . .
Open >Read Table from whitespace-separated file. . .
Save >Save as text file. . .
Help >Search Praat manual. . .
Help >About Praat. . .

It might seem like an odd idea to explore buttons just for the sake of explor-
ing, but you’ll be surprised to find yourself learning a lot about the properties
of each object and the capabilities of Praat just by taking a look at the buttons
available by default and then for each type of object. In the long run you’ll be
saving time by knowing that some options are available, so that you don’t have
to program those functions yourself.

3.1 How does the Praat Objects window work?

Having the Praat Objects window in front of you, go to Open >Read from file. . .
and open the two files that are located inside the folder first objects, within
your files and code folder. These files are called sound object.wav and
textgrid object.TextGrid.

Tip 1 : If you don’t like the endless clicking of the menus, press Control + O
(Command + O in Mac) to start the file opening process.

Tip 2 : You can open more than 1 object at the same time by pressing Shift (for
group selection) or Control (for individual selection) while doing the clicking.

5Check out how to do this here: http://www.fon.hum.uva.nl/praat/manual/Add_
to_dynamic_menu___.html

5

http://www.fon.hum.uva.nl/praat/manual/Add_to_dynamic_menu___.html
http://www.fon.hum.uva.nl/praat/manual/Add_to_dynamic_menu___.html


Once the two files have been opened, you should notice that several things
have changed. First of all, your Praat Objects window now has two objects: 1.
Sound sound object and 2. TextGrid textgrid object (as seen in
Figure 1). Notice that the objects have been named in a specific format: first,
the object has an ID number, which is assigned to each new object; second,
the name of the type of object; and, thirdly, the name of the file, without the
extension (.wav and .TextGrid, respectively).

All these elements are going to be important while preparing scripts for
Praat, because we will need to select different objects at different points (and
we don’t want to select wrongly), and also because – as now you can see – the
options displayed in the Praat Objects window are object-dependant.

Go and select the first of those objects and then select the second. Notice
how the options available on the right hand side change. Also, select the first
object and select the Save menu, and then select the second object and do the
same. These options also have changed! Select the first object one more time;
then press Shift or Control (Command) and select the second object at the
same time. The options available have changed again.

This is a dominant feature of Praat and of Praat scripting: this software
and its programming language are object oriented, because Praat assumes the
existence of a group of entities that have predefined characteristics and you
are sort of restricted to those features and use scripting to make these objects
to interact. Actually, most of the time we will be dealing with the creation,
selection, use and removal of Praat objects.

A good way to think about this is by means of an analogy: in a typical
human body, for example, all of its constituent elements work together and are
linked in several ways, but each one is in charge of only a certain number of
tasks (receives certain inputs, produces certain outputs, interacts with other
objects, etc.). The same goes for Praat.

TTGYHD 2 (difficulty level: slug): What do you think would be the result
of using a command or function for an object from a Praat script when that
option is not available for that particular object?

There are a couple of very valuable lessons to take home from this: firstly,
what we can do in Praat will depend heavily on the object currently selected;
secondly, given that there are so many options per object, it is a good exercise
to explore the options available for those objects we often use.

TTGYHD 3 (difficulty level: slug):
a. Select the Sound object, then the TextGrida object and then the two of
them combined. Inspect the options for each of these selections and identify
one option for each object that you’ve never seen before and that you think
will be useful to you some day.
b. (If you’re in a group) Let’s talk about that.

aFor documentation about TextGrids, see: http://www.fon.hum.uva.nl/praat/
manual/TextGrid.html

3.2 The link between the object window and a script

All the buttons/options that you see in the Praat Objects window are available
for use within a script. You have to imagine this as if you had a “virtual

6

http://www.fon.hum.uva.nl/praat/manual/TextGrid.html
http://www.fon.hum.uva.nl/praat/manual/TextGrid.html


Figure 1: Praat Object window with two objects.

7



pointer” that does all the clicking that you would do by hand, but now, instead
of clicking, you have to use the name of that option/object to use it/access it.

Tip 3 : Go and press Praat >New Praat Script . You should see a new empty
window named untitled script (that’s because it hasn’t been saved yet).
Press Edit >Paste history . Kaboom! All the “clicking” that you’ve been doing
thus far has been pasted into the script window using script lingo. Pasting
Praat’s history can be very useful.

This is what I get after doing the Edit >Paste history (you should be getting
something similar; I’m using Windows):

Read from file: "E:\files_and_code\first_objects\sound_object.wav\"
Read from file: "E:\files_and_code\first_objects\textgrid_object.

TextGrid"
selectObject: "Sound sound_object"
selectObject: "TextGrid textgrid_object"
selectObject: "Sound sound_object"
plusObject: "TextGrid textgrid_object"
selectObject: "Sound sound_object"
Play
New Praat script

You can see now that, from Praat’s point of view, the clicking versus the use
of those commands and functions in a script are not different at all. When using
the mouse, you read the options, decide which one to use and then do clicks to
press-those-buttons/select-the-options that you need. What Praat does behind
the scene is parse those clicks as if you were writing a script with your mouse
(see the code above, if you don’t believe me). When writing a script, you use
those same commands and/or functions, also by their name, but now you’ve got
to tell Praat by writing out (not clicking) which commands and functions you
want to use and which values those commands and functions will take.

3.3 How to read and write Praat scripts using Sublime
Text

From now on, whenever you need to read or write a Praat script, use Sublime
Text. The reason to do this is that the Praat scripting interface only shows
plain text, and doesn’t tell you the number of each line or has syntax high-
lighting. Also (but this is word-editor-dependent), it doesn’t help you write
script via snippets, it doesn’t suggest variable-names that you’ve already used,
it doesn’t allow to do efficient searches or comparisons for debugging, amongst
other common functionalities of word-editors.

To read a Praat script in Sublime Text, open the script using File >Open
File. . . (or by pressing Control + O) and find your way to the file. You can
also drag-and-drop files into Sublime Text, which is even quicker.

To write a Praat script and get the syntax highlighter, you have several op-
tions: you can start a new file (by using File >New File or pressing Control +
N ) and save it with a meaningful name plus the .praat extension (for exam-
ple, formant analyses.praat). Once you save the file with that extension,
the highlighter should start working immediately. You can also write a Praat

8



script without saving it and still get the highlighting by selecting View >Syntax
>Praat .

When you want to test your script in Praat, open it using Open >Read
from file. . . . A new window should appear. In that window, select Run >Run
(or press Control + R). That should execute your script. Now, if you want to
modify that script, go back to Sublime Text, modify it, save it and then go back
to the script window in Praat and select File >Reopen from disk , and then run
it again.

It is a very good practice to edit your scripts in a proper text editor (such as
Sublime Text, Notepad++, Kate, etc.) and then only use Praat’s script window
to reopen the script and run it.

Tip 4 : The process of editing and testing scripts is iterative and potentially
time-consuming. Get used to the hotkeys to save time and become less mouse
dependant.

TTGYHD 4 (difficulty level: slug):
a. Copy, character by character (I mean, without using copy & paste), the
script shown belowa. After writing the first line, save the script in your
files and code folder as my first script.praat, and then finish writ-
ing it and save it again.
b. Open the resulting script in Praat and run it.
c. Edit it in Sublime Text to have number = 2 instead of number = 1.
Remember to save your script.
d. Go to the Praat scripting window and use File >Reopen from disk . Then,
run your script once more.

aIf you copy & paste the code from this PDF you might lose the indentation and get
some spurious extra spaces.

number = 1
if number == 1

appendInfoLine: "The number is one."
else

appendInfoLine: "The number is two."
endif

4 What’s a script and what’s a better script

4.1 So, what’s a script?

A script is nothing more than a sequentially ordered set of instructions given
to an interpreter (in our case, Praat) to perform one or more tasks. Naturally,
these instructions to the interpreter have to be said in the interpreter’s language,
that is, in Praat scripting syntax.

When the tasks to be done in Praat are simple, or when we are just exploring
the commands and functions, the mouse clicking is perfectly fine. However, as
soon as you need to do something repetitively or when you need to conduct
calculations, or whenever possible – I’d add – a script is a better idea.

9



Having a script is a great idea for several reasons: (a) once you write it,
you just re-run it as many times as needed, and avoid all the clicking that
would otherwise be necessary; (b) with a script you assure reproducibility of
your analyses; if there is no randomization and your sample stays the same, the
results will always be the same; (c) very complex tasks can be modularized and
implemented in a script, but would be almost impossible to run “by hand”.

Writing a script might seem as a difficult task at first, and at the beginning
you might not see the point on doing something that could potentially be done
faster by hand. Yes, there is a learning curve, and also Praat scripting might
not be the easiest programming language ever invented, but with time, patience
and a good deal of Googling, things get easier over time.

4.2 How to write a good script?

Below I’ve listed some of the principles that I follow when writing scripts (in
order of importance)6. More guidelines exist and the hierarchy that I use might
not be the same for other programmers.

(a) It has one clear goal : You script most have one very clear goal. The more
clearly you know what you need to do, the easiest is to divide that big
challenge into simple tasks and then write them using Praat’s programming
language. If you don’t know what you’re supposed to be writing, then you’re
not ready to start scripting. As a general rule of thumb, avoid having more
than one script in the same file (unless you’re using procedures). Use a
filename that is informative and representative of your script, and that will
tell you something meaningful if you visit your script in two-month’s time.

(b) It’s explicit : Even if your script doesn’t work, even if it’s ugly, even if you
don’t understand half of your own script, be explicit. This means, in more
practical terms, to get used to generously comment on your scripts and
to use meaningful variable names. If you stick to these rules, you will be
helping yourself understand your own script and also, of course, you’ll be
helping others that might need to use your script.

It happens very often that you go back to a script you wrote 3 months,
1 year or many years before and you have no idea what that script was
supposed to do. This is when you thank yourself for having been a good
commenter and for using meaningful variable names.

TTGYHD 5 (difficulty level: slug): Take a look at the script explicit
bad.praat, below (you can find it in your files and code folder). What

do you think this script does? Does it strike you as an easy-to-read script?

z = randomInteger(2,100)
d = 0

for i to z
q= i mod 3 ; What on earth is "mod"?
if q == 0
d = d +i

6This section is heavily inspired in a section of José Joaqúın’s tutorial on Praat scripting,
referenced at the end of this manual.

10

http://www.ucl.ac.uk/~ucjt465/


endif
endfor
writeInfoLine:d

TTGYHD 6 (difficulty level: slug): Now, let’s consider explicit good
.praat (see inside your files and code folder), below. Notice that the
script does exactly the same than the previous one. Why is it easier to under-
stand now?

# Creating a random number.
random_number = randomInteger(2, 100)

# Defining dummy variable to add something to it later.
result = 0

# Iterator to assess numbers between "1" and the random number.
for number_to_test from 1 to random_number

# Obtain the remainder of number_to_test when divided by "3".
remainder = number_to_test mod 3

# Assess divisibility by 3 (it should be "0").
if remainder == 0

# If the condition is met, add the number to the dummy.
result = result + number_to_test

endif
endfor

#Send final result to screen
writeInfoLine: result

Tip 5 : As you have probably noticed, comments are declared by using the
octothorpe symbol “#” (a.k.a. number sign or hash). You can also create
inline comments by using semicolon, as shown below.

# This is a comment.
random_number = randomInteger(2, 100) ; This is also a comment.

(c) No-line-unknown rule: When writing a script do not let yourself move to
the next line of code if you don’t know exactly what your current line is
doing or the value that it’s supposed to have at that particular point. Same
coin, different side: you should avoid writing a section of a script that comes
after a section that you don’t understand or that you haven’t been able to
finish (unless you really know what’s going to happen on the first section
or if you’re writing procedures).

This is less important when reading scripts, particularly if you’re a beginner,
because some lines of code can be quite complicated and in long scripts it’s
virtually impossible to follow the flow of information just by eyeballing.
However, using someone else’s script without understanding what it does
(even a single line), can be quite dangerous. Unfortunately this happens a
lot!

11



(d) It’s kept tidy : A script that is kept tidy is easier to read and maintain than
a messy one, that’s for sure. Let’s take another look to the explicit bad
.praat script, but now without spaces where there shouldn’t be and with
indentation. It gets better, doesn’t?

z = randomInteger (2, 100)
d = 0
for i to z

q = i mod 3
if q == 0

d = d + i
endif

endfor
writeInfoLine: d

Avoid using spaces or “tabs” where there shouldn’t be. The indentation has
to be used meaningfully as well. Normally, a process that happens inside
another will require +1 indentation. In the script above, what happens
inside the for loop has been indented, and then what happens inside the
if conditional jump has been indented as well.

In programming languages where indentation is not parsed as part of the
language’s structure, such as Praat scripting, the use of indentation is de-
termined by your scripting-style preferences. However, where and when to
use indentation should hopefully be consistent across your script and also
meaningful for you and your readers. It’s up to you whether you choose to
use “tab” or a fixed number of spaces (normally 2 or 4) for your indentation.

TTGYHD 7 (difficulty level: slug): Go to the script indentation.praat
(see files and code) and indent what you consider should be indented and
separate the different sections.
a. Do your results look like indentation SOLUTION.praat?
b. What does the indentation in indentation SOLUTION.praat tells us
about its structure?

(e) It’s efficient7: Is your script doing the same thing more than once? Are you
using the same sequence of commands several times in your script? Are the
choices you’ve made computationally economical?

As a rule of thumb, if you see yourself writing the same lines of code over and
over in your script, you probably need either a for loop (see section “6.2
Loops”) or a procedure (see section “10.1 Procedures: writing you own
functions”). Also, keep in mind that, although modern computers barely
complain about running out of memory, they do have limits. Try to find
efficient ways to do the same tasks.

7This and the next two guidelines are more relevant for advanced scriptors; if you are a
beginner, do prioritize the ones above.

12



TTGYHD 8 (difficulty level: slug): Go to the folder efficiency, inside your
files and code folder, and open and compare efficiency 1.praat,
efficiency 2.praat and efficiency 3.praat. All these scripts do the
same thing (they print to the Praat Info screen the even numbers between 0
and 100), albeit using different approaches.
a. Rank the scripts regarding efficiency.
b. Justify your ranking to yourselfa or to someone else, if you happen to have
someone around you.

a

Tip 6 : If you want, you can use Shift + Alt + 3 in Sublime Text to divide
your screen into 3 cool columns. The same works for 2 or any other number of
columns up to 5. It’s easier to compare documents by having more than one
column available in Sublime Text.

(f) It’s easy to expand : After you gain some experience, you’ll be writing scripts
that perform very specific but commonly used tasks, and you’ll want those
small snippets of code to interact. With that in mind, try to keep your
scripts open to possible expansions and contemplate separating some of the
tasks in different scripts.

TTGYHD 9 (difficulty level: slug): For a good example of what I mean, take
a brief look at José Joaqúın’s “JJATools”, here: https://github.com/
jjatria/plugin_jjatools.
a. Do you see how some “scripts” (procedures) are used inside other scripts?
b. Why would you want to do that?

(g) Something good, if short, twice as good8: Well, this is sort of self-explanatory.
You can compare again efficiency 2.praat to efficiency 3.praat
in case you find yourself sceptical about this guideline.

5 Variable usage

In programming, a variable is a place in the computer’s memory where some-
thing is stored. For our purposes, we’ll define a variable as the result of the
assignment of a certain value (numerical or not) to a certain tag or identifier
(its name). It is by assigning content to a tag that the computer’s memory is
allocated; also, by virtue of this type of link, the content of a variable can be
accessed (referenced) whenever needed through its tag.

Although this might sound a bit awkward, for some reason I feel compelled
to justify why we should be using variables in a script on the first place; after
all why should we bother?

Let’s imagine that you, for some obscure and Mephistophelian reason, are
planning to prepare a relatively simple script that helps you to do some calcula-
tions: it will multiply any number by that very same number minus 1, subtract

8Conversely: something bad, if long, twice as bad.

13

https://github.com/jjatria/plugin_jjatools
https://github.com/jjatria/plugin_jjatools


to the result of than the original number and divide the result by the result of the
first multiplication. If you’d like to start with the number 4, those calculations
could be written as follows:

((4 * (4 - 1)) - 4) / (4 * (4 - 1))

Now, if the starting number were to be 16, we could write:

((16 * (16 - 1)) - 16) / (16 * (16 - 1))

So, no big fuss and everyone’s happy, right? Well, what if you had to do this
10, 100 or 500 times, with different numbers? Without variables, you’d have to
manually make 5 changes to your script as many times as the number of times
you need to run it. It certainly doesn’t sound so simple anymore. Also, don’t
you feel that you’re rewriting the same stuff over and over (the numbers “4”
and “16”)? Wouldn’t it be simpler to have a way to refer to that starting value
many times without having to rewrite the entire thing? This is when variables
appear and save the day. With variables, you could write a very short script,
that would require only one change per iteration of your script (the assignation
that occurs on the first line):

number = 4
result = ((number * (number - 1)) - number) / (number * (number - 1)

)

As you can see, variables are tremendously useful because they can be refer-
enced several times in a script and also we can decide when to modify its values,
even without input from the user. In the following sections and chapters we’ll
be exploring ways in which variables can be used efficiently in order to make
your life easier.

TTGYHD 10 (difficulty level: slug):
a. Can you imagine a script that doesn’t requires variables?
b. What type of tasks could it actually do in Praat?
c. Can you write one right now? What about copying and running the one-
liner scripts from above?

In Praat, variables can be of two classes: numeric or string. The numeric
variables can contain any real number (integers, decimals, negative numbers,
etc.9). To assign the value “1” to a numeric variable called numeric variable,
you’d do the following:

numeric_variable = 1

Notice that you can assign the content of a numeric variable to another
numeric variable, by doing something like this:

9For more about this: http://www.fon.hum.uva.nl/praat/manual/Formulas_1_4_
_Representation_of_numbers.html

14

http://www.fon.hum.uva.nl/praat/manual/Formulas_1_4__Representation_of_numbers.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_1_4__Representation_of_numbers.html


numeric_variable_1 = 1
numeric_variable_2 = numeric_variable_1

The first character of a variable must always start with a lower-case let-
ter from the English alphabet (a-z). From the second character on, you can
use upper-case characters (A-Z), numbers (0-9)10 and underscores (“ ”). The
following, for example, would be a valid name:

numericVariable_0.3_OhYes = 1

With numeric variables you can do whatever you can normally do with
numbers. To give a simple example, the result of the following script would
print to Praat Info the number “3”:

variable_a = 1
variable_b = 2
variable_c = variable_1 + variable_2 ; Comment: here we are adding

two numbers!
appendInfoLine: variable_3

TTGYHD 11 (difficulty level: slug): Use at least 2 different numeric variables
to conduct an arithmetic operation of your preference using Praat scripting.
Share the result of your endeavours to your fellow scriptors, if they are around.

String variables, on the other hand, contain text. To assign the text moon
to a string variable called string variable$, you’d do the following:

string_variable$ = "moon"

Notice the differences between the notation for the string and numeric vari-
ables. The string variables always end in “$”. Also, the text that is assigned to
a string variable always has to be enclosed by double quotation marks, unless we
assign the content of one string variable to another, in which case the name of
the variable must be used:

string_variable_1$ = "mon"
string_variable_2$ = "soon"
string_variable_3$ = string_variable_1$ + string_variable_2$

TTGYHD 12 (difficulty level: slug): By the way, what do you think will be
the result of adding up two strings like in the previous script? Make your
predictions and then run the script in Praat.

Double and single quotation marks (“mon” vs. ‘mon’) mean different things
in Praat scripting. While the former defines the content of a string variable,
the second is used for variable substitution. Essentially, instead of referring to
a string, or to the variable that contains that string, if you were to use single
quotation you’d be substituting the reference by the content of the variable

10You can use decimal numbers in variable names, as in “numericVariable 0.3 OhYes
= 1”, but I wouldn’t recommend that.

15



(“mon”). In our example above, using single quotation marks (‘mon’) crashes
the script. Given that variable substitution should be generally avoided, we
won’t keep talking about this here. Instead, just stick to double quotation
marks, unless you really need variable substitution.

You have to be careful at distinguishing numeric and string variables, and
also at knowing when you need to use double quotations or not using quotations
at all. In the following script, for example, we will be saving a string into a
variable:

potato$ = "1"

The variable potato$ contains the string (the sequence of characters, ex-
cluding quotation marks) “1”, but not the number (the value) 1. If you were to
add the content of potato$ to a numeric variable, Praat would complain and
your script would crash.

The following script also shows a result that might look a bit counter-
intuitive, but it works perfectly fine (it’s syntactically sound, although it’s dif-
ficult to imagine a scenario where someone would write this particular script):

number = 1
potato$ = "number"
writeInfoLine: potato$

TTGYHD 13 (difficulty level: slug): What will be printed on the Praat Info
window after running the previous script?

Tip 7 :

a. The functions writeInfoLine and appendInfoLine can make the
content of a variable visible. The first of these functions (writeInfoLine)
erases everything previously printed on the Praat Info window and then writes
the new line. This is useful when you need a clean slate and you need to
print something into the Praat Info windows as well, but you risk to delete
information from your Praat Info window that you still need (be careful!).
b. The second function (appendInfoLine) doesn’t delete anything; it only
appends a new line to the existing ones in the Praat Info window.
c. You can combine numeric and string variables in a line by using commas.
If you use “+”, you can only add variables of the same category: only numeric
or only string variables.
d. If you want to clean the Praat Info window without adding a newline, you
can use the clearinfo command.
The script adding lines.praat, located in your files and code folder,
shows an example of some of these tips.

Do remember to use variable names that are meaningful and that you think
you’re going to remember afterwards. Those names can be as long as you
want, but try to keep them short. Also, some people prefer to use underscores
to separate words within a variable, while others choose to separate them via
starting upper-case characters; you can also find some scriptors that don’t show

16



separate words at all (see the snippet of code, below). There is no golden rule
here, although I do suggest to show different words in variable names: use the
system that best suits you.

some_men_just_want_to_watch_the_world_burn$ = "Alfred Pennyworth"
someMenJustWantToWatchTheWorldBurn$ = "Alfred Pennyworth"
somemenjustwanttowatchtheworldburn$ = "Alfred Pennyworth"

6 Controlling the flow: jumps and loops

Often you’ll want to make the behaviour of your script dependent on certain
conditions such as “if A happens, do this; if B happens, do this other thing
instead”. This is when conditional jumps become handy. Also, the whole point
of writing scripts is to take advantage of the computer capabilities to do many
things very fast, instead of you doing them one by one, slowly. This is when
loops are fundamental.

TTGYHD 14 (difficulty level: medium):
a. Where in this handout have we already used conditional jumps and loops?
b. For what purpose?

6.1 Conditional jumps

Conditional jumps allow you to control the flow of information in your script
into different alternative directions depending on predefined conditions (hence
the name, “conditional jumps”). This is very useful, and it is important that
you become accustomed to use them and to using them well.

In Praat scripting, the simplest conditional jump possible starts with an if
declaration, followed by a variable, number or string, a comparison operator,
and then another variable, number or string. The conditional jump ends in a
different line with an endif declaration. Any lines that you insert between
these two declarations (if and endif) will only be executed if the conditions
evaluated are true. Also, you can only evaluate two values from the same cate-
gory: numbers with numbers and strings with strings.

if 12 == 12
appendInfoLine: "This is indeed equal"

endif

As you can see, the conditional jump begins with and “if” statement, fol-
lowed by the number “12”, which is compared via “==” to the number “12”.
If the comparison holds true, a line will be appended to the Praat Info window.
After this line, the conditional jump is closed through the “endif” declaration.

Tip 8 : The following comparisons are allowed in the current version of Praat
scripting: equals (“==” or “=”a), unequal (“<>”), less than (“<”), greater than
(“>”), less than or equal (“<=”) and greater or equal (“>=”).

aAlthough the evaluation within the conditional jump will work anyways whether you
use a single or a double equals sign, it’s healthy to distinguish comparisons (if 12 == 12)
from assignments (variable = 12). I recommend you to always use double equals sign for
comparisons.

17



You can have multiple evaluations within the same declaration, as in the
following script:

if 12 == 12 and "tomato" <> "potato"
appendInfoLine: "The numbers are equal, the strings are not."

endif

And, naturally, you can have forking paths, so to make your script react in
different ways depending on the defined conditions:

Tip 9 : The function randomInteger(min, max) provides a random inte-
ger between the minimum and maximum defined values.

# Generating and storing random number
number_to_test = randomInteger(1, 4)

# Conditional jump to assess a random number.
if number_to_test == 1

appendInfoLine: "The number is 1."
elsif number_to_test == 2

appendInfoLine: "The number is 2."
elsif number_to_test == 3

appendInfoLine: "The number is 3."
else

appendInfoLine: "The number is 4."
endif

In this script, we generate a random number between “1” and “4” and save
the result of that operation in the numeric variable called “number to test”.
Then, we declare a conditional jump, which as usual starts with “ if”. Then,
we include the terms of a comparison; in this case, the content of the variable
“number to test” and “1”. If this condition is met, a line is appended to the
Praat Info window that says “The number is 1.”.

We have added more possible outcomes for our conditional jump, however. In
subsequent declarations, still in the same general conditional jump, we evaluate
whether “number to test” equals “2” or “3”. We do that via the “elsif”
declaration, which is short for else if (you can have as many elsif decla-
rations as you want). Just as in the first “if” comparison, you need to enter
both terms of the comparison for the elsif declarations. If you forget to do
this (if you had written “elsif == 2”), Praat will complain, because: if what
is compared to “2”?

Finally, there is a final condition, declared via “else”. This “else” dec-
laration can be translated as “anything else that has not been covered in the
previous declarations via if and elsif statements”. Given that it’s any other
scenario not covered by the previous definitions, it doesn’t require a declaration
of terms (this can be a double-edged sword, if your else statement covers more
conditions that those you foresaw). By the way, using elsif doesn’t force you
to use else as well, and vice-versa. Both are optional and only the initial if
statement is mandatory.

18



TTGYHD 15 (difficulty level: slug): Use Sublime Text to write a script (and
test it in Praat) called what if if.praat in which you assess whether a
numerical variable called numeric is equal to 1, 2 or 3. Save the script
in your files and code folder and share your solutions with the group (if
you happen to be in one). If you get stuck, check a possible solution in your
files and code folder, called what if if SOLUTION.praat.

You can always nest elements inside of other elements in Praat. This means
that you can have if conditional jumps inside other conditional jumps. You
can go as deep as you want, as long as you know what you’re doing11. In the
script below, there is nesting of the sort I’m talking here.

# Defining the variable
number = 1313

# Conditional jump: first level.
if number > 10

new_number = number / 2
remainder_number = new_number mod 2

# Conditional jump: second level.
if remainder_number == 0

appendInfoLine: "Number is bigger than 10 and divisible by 2."
else

appendInfoLine: "Number is bigger than 10, but not divisible
by 2."

endif
else

appendInfoLine: "Number is smaller than 10."
endif

6.2 Loops

A loop allows you to execute a task repetitively a certain number of times. How
many times exactly will depend on certain conditions that you have to define
in the loop’s declaration. They are the main tool that you’ll use to simplify
iterative processes and begin to be able to conduct massive tasks that would
otherwise be impossible to finish by hand.

6.2.1 For loops

These loops are the simpler ones to use. They execute a task as many times
as indicated in the range that has to be defined after the main declaration.
The for loop begins with a “for” declaration which is followed by an iterative
variable, that will contain the range of values specified immediately afterwards:
“from 11 to 20”, as in the example below. The for loop is closed with an
“endfor” declaration. Any lines placed between these two elements (“for”
and “endfor”) will be executed as many times as specified. See an example
(run it!) of a simple for loop below:

for changing_variable from 11 to 20
appendInfoLine: changing_variable

endfor

11Cf. https://www.youtube.com/watch?v=66TuSJo4dZM

19

https://www.youtube.com/watch?v=66TuSJo4dZM


The most difficult part about using a for loop has to do with understanding
the iterative variable (“changing variable” in the example) and using it
whenever convenient. Think of this iterator variable as a variable that will
contain a different value at each cycle of your for loop. Which value? In our
example above, “11” on the first cycle, “12” on the second, . . . , . . . , and “20”
on the last cycle.

Given that this variable is an iterator, often it’s conventionally written as
“i”. Of course, you can name that variable as you see fit. Also, if your for loop
starts from the value 1, which is the case most of the time, you can skip the
“from 1” part in your for loop declaration. The following loop – which prints
to the Praat Info window the numbers from 1 to 10 – exemplifies this:

for i to 10
appendInfoLine: i

endfor

You can use variables instead of number for the ranges of your loop; also,
you can nest for loops. You can access inside your for loop variables that have
been defined outside, as in the next example:

minimum = 5
maximum = 15
message$ = " is a number."
for i from minimum to maximum

appendInfoLine: i, message$
endfor

Tip 10 : You can also intervene the iterator variable from within the script,
which can be useful if you need to, for example, skip a particular number
in your cycle (e.g., if you need to iterate from 1 to 10, but skipping the
number 6), or if you want to make your for loop to only use even numbers.
Be careful, though! If you do this wrong, you might end with an infinite loop
that will make Praat crash (and maybe your computer as well).

TTGYHD 16 (difficulty level: slug):
a. Check in your folder files and code the script skip a beat.praat,
where the iterator variable has been intervened to skip a number.
b. Imagine a scenario when this could be useful for your own daily tasks with
scripts and Praat analyses.
c. Can you think of an alternative and simpler way to achieve the same result?
Clue: see 6.1.

6.2.2 While loops

These loops iterate while certain predefined condition (or set of conditions) is
(are) true. The while and repeat loops are more difficult to grasp than the for
loop. Also, if used improperly, it’s quite easy to inadvertently create an infinite
loop that will make Praat to crash, so I recommend you to treat these with a
bit of respect and think them through before attempting to use them.

Let’s imagine that you need to divide a number by 1.25 until it’s smaller
than 5, but given that you don’t know the original number (nor its order of

20



magnitude) until the user inputs it, you don’t know beforehand how many times
you’ll have to divide the number. You can use a while loop here to divide the
number until it meets the required condition:

input_number = 142857142867
while input_number > 5

input_number = input_number / 1.25
appendInfoLine: input_number

endwhile

In this script we see that “input number” receives a value. Then, a while
loop is declared, and the comparison to be evaluated is stated as usual. The
while loop is closed by using “endwhile”. All that lies between these two
declarations will be repeated until the above-mentioned comparison is satisfied.
In order for the condition defined to be satisfied at some point, we need at
least one of the elements of the comparison to be a variable, so that we can
modify its value from within the while loop. Do you see how this works in the
script above? The comparison states “input number > 5”, and we affect
“input number” from within, by dividing that number by “1.25” and then
assigning the result of that calculation to “input number” again. Neat, right?

If “input number = input number / 1.25” is a bit counter-intuitive
for you – because we are doing something to variable A and then saving the effect
of that into A itself – think of it as being the same than doing the following,
but in less steps:

input_number = 142857142867
while input_number > 5

result_of_division = input_number / 1.25
input_number = result_of_division
appendInfoLine: input_number

endwhile

TTGYHD 17 (difficulty level: slug):
a. Why is the following script (see below) flawed?
b. What do you think would happen if we run it?

input_number = 142857142867
while 142857142867 > 5

input_number = input_number / 1.25
appendInfoLine: input_number

endwhile

6.2.3 Repeat loops

Repeat loops are similar to while loops in that they somehow repeat something
until it reaches a certain condition (which is defined at the end of the whole
declaration). How is this different from the while loop, then? There are two
main differences. The most important one is that while loops could eventu-
ally not be executed even once, if the declared comparison happens to be false
from the beginning, whereas repeat loops are always going to be executed at
least once, because during the first cycle of the loop the condition(s) declared
has(have) not been evaluated yet.

21



TTGYHD 18 (difficulty level: slug): Can you imagine a scenario where this
difference (repeat: always runs at least once; while: runs only if conditions are
met) could be relevant or even crucial?

The second difference, which causes the behaviour described above, has to
do with where the assessment is placed in the declaration. In while loops this
assessment is declared at the beginning; in repeat loops this assessment is de-
clared at the end. Given that the actual final result from a while and repeat
loops are normally the same, some people conceive these two loops as equiva-
lent, but we now know that the number of times a condition is evaluated changes
depending on the loop you’re using, and if you are also interested in the number
of evaluations (besides the final result, I mean), then you need to decide which
loop best accommodates your requirements.

Oh, mortals, behold (below) a repeat loop, which does the equivalent of the
while loop that we were analysing above:

input_number = 142857142867
repeat

input_number = input_number / 1.25
appendInfoLine: input_number

until input_number < 5

Besides the declaration being in different places, do you notice any other
difference? Hey! Wait a second! Why in the while loop we have “while
input number > 5”, but in the repeat loop we have “until input number
< 5”? The first one has a “greater than” and the second one a “less than”.
Weren’t we doing the same thing? Well, not exactly. The while executes a loop
while a condition is true (“I will keep cycling while this condition is true, no
matter what; if I happen to find a false result for my assessment, I will stop”),
whereas a repeat executes a loop until something happens (“I will keep cycling
throughout all this false assessments, until I find myself a good and nice true;
only then I shall stop”).

TTGYHD 19 (difficulty level: slug): Go to your files and code
folder and open (in Sublime Text) and execute (in Praat) the script
repeat until while.praat.
a. Observe the default behaviour of the two loops and compare the results
that are printed into the Praat Info window.
b. Modify the numeric variable input number for both loops so that it’s
smaller than “5”. How does the behaviour of the loops change?

7 Some useful functions

So, first, what’s a function? A function is itself a (normally short) script that
takes in arguments and produces an output. The actual script that makes the
function work is hidden from us, we only call the function, provide arguments,
get the result and do with it whatever we want.

Tip 11 : Normally, the first thing you’d like to do with the result of a function
is to save it into a variable so that you can access it later.

22



There is plethora of tools for Praat scripting that fit the rather inclusive
definition provided above. For the time being, however, we will only examine
some mathematical functions12 and string functions13.

7.1 Mathematical functions

Well, there are lots of mathematical functions in Praat. How many you use
and when will obviously depend on the tasks you have at hand. If you do
signal processing, for example, you’ll find yourself checking the documentation
for mathematical functions frequently. If you are more of a measurements type
of person, you’ll probably only use a few. Some of the more often used ones are
listed below.

(a) abs(x): Provides the absolute value of a number, that is, it ignores if it is
a positive or negative number.

number = -0.333
absolute_number = abs(number)
writeInfoLine: absolute_number ; Prints "0.333" to screen.

TTGYHD 20 (difficulty level: slug): What type of acoustical variable can
take positive and negative values?

(b) round(x): It provides the nearest integer.

number = -0.333
rounded_number = round(number)
writeInfoLine: rounded_number ; Prints "0" to the screen.

(c) sqrt(x): Provides the square root of “x”.

number = 9
sqrt_number = sqrt(number)
writeInfoLine: sqrt_number ; Prints "3" to the screen.

(d) min(x, ...): Finds the minimum of a series of numbers.

number_1 = 10
number_2 = 30
minimum = min(number_1, number_2, 50)
writeInfoLine: minimum ; Prints "10" to the screen.

(e) max(x, ...): Well, this one finds the maximum.

number_1 = 10
number_2 = 30
maximum = max(number_1, number_2, 50)
writeInfoLine: maximum ; Prints "50" to the screen.

12Documentation here: http://www.fon.hum.uva.nl/praat/manual/Formulas_4_
_Mathematical_functions.html

13Documentation for this here: http://www.fon.hum.uva.nl/praat/manual/
Formulas_5__String_functions.html

23

http://www.fon.hum.uva.nl/praat/manual/Formulas_4__Mathematical_functions.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_4__Mathematical_functions.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_5__String_functions.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_5__String_functions.html


(f) exp(x): It exponentiates the constant e (2.71828182845. . . ) by the value
provided in “x”.

e_number = exp(3) ; same as eˆ3
writeInfoLine: e_number ; Prints "20.085536923187668" to screen.

(g) randomInteger(min, max): It provides an integer value between the
minimum and maximum values defined in “min” and “max”.

minimum = 2.54
maximum = 27.00002
random_number = randomInteger(minimum, maximum)
writeInfoLine: random_number ; Prints random integer number to

the screen.

TTGYHD 21 (difficulty level: high): Use the randomInteger(min, max)
function in a script to find the minimum and maximum values from a pool of
100 randomly generated numbers, whose minimum (min) will be the year
0 and the maximum (max) the current year of our Lord. You’ll need at
least one for loop and several conditional jumps to solve this problem. Save
your script as “min max from 100.praat”. You can find one possible so-
lution to this challenge in your files and code folder, in a script called
“min max from 100 SOLUTION.praat”.

(h) hertzToBark(x): It transforms a value from raw Hertz to Bark-rate
(analogous functions for other transformations are: barkToHertz, hertz
ToMel, melToHertz, hertzToSemitones and semitonesToHertz).

value_in_Hz = 1400
value_in_Bark = hertzToBark(value_in_Hz)
writeInfoLine: value_in_Bark ; Prints the result to screen.

Finally, what if the mathematical function you need is not in the list provided
in the documentation? You can create your own functions (see section “10.1
Procedures: writing your own functions”) and then use them in other scripts
as you would with any other function (check “9.4 Include other scripts and
procedures”).

7.2 String functions

If you work with TextGrids, you’ll be using these string functions. All these
have in common that they return a text string as output or have a string as at
least one of their arguments. Essentially, they do stuff with strings. Those that
return a string as the result of their mingling are followed by a dollar sign.

Again, here it is a partial list of string functions (but do check the documen-
tation to find other very interesting and potentially useful ones):

(a) length(a$): Provides the length of the string14.

14This is an example of a string function that is not followed by “$” (you have
“length string = length (string$)”), because it returns a number.

24



string$ = "potatoes"
length_string = length(string$)
appendInfoLine: length_string ; Prints the number "8" to screen.

(b) left$(a$, n): Gives back a string that has the first n characters of a$.

string$ = "potatoes"
left_characters$ = left$(string$, 3)
appendInfoLine: left_characters$ ; Prints "pot" to screen.

(c) mid$(a$, i, n): Returns a string of length n from a$, starting from
character in position (index) i.

string$ = "potatoes"
mid_characters$ = mid$(string$, 3, 4)
appendInfoLine: mid_characters$ ; Prints "tato" to screen.

(d) right$(a$, n): Gives back a string that contains the rightmost n char-
acters of a$.

string$ = "potatoes"
right_characters$ = right$(string$, 4)
appendInfoLine: right_characters$ ; Prints "toes" to screen.

TTGYHD 22 (difficulty level: medium): Let’s create a script called “first
last equals.praat” that parses words written in lower-case and sends a

message to the screen if the first and last characters of the word are identical.
If you get stuck, check the solution in your files and code folder, called
“first last equals SOLUTION.praat”.

(e) index(a$, b$): Gives you the index (the place in the sequence of char-
acters) of the first occurrence of the string b$ in the string a$.

string$ = "potatoes"
string_to_look$ = "t"
index_t = index(string$, string_to_look$)
appendInfoLine: index_t ; Prints the number "3" to screen.

(f) rindex(a$, b$): Gives the index of the last occurrence of b$ in a$.

string$ = "potatoes"
string_to_look$ = "t"
rindex_t = rindex(string$, string_to_look$)
appendInfoLine: rindex_t ; Prints the number "5" to screen.

TTGYHD 23 (difficulty level: high): Can you modify “first last equals
.praat” so that, instead of using left$(a$, n) and right$(a$, n) it
uses length(a$), left($, n) and rindex(a$, b$) to obtain the first
and last character and assess if they are equal, within a conditional jump?
Name that script “first last equals modified.praat”. You can find
a possible solution to this problem in your files and code folder, in a script
called “first last equals modified SOLUTION.praat”.

25



(g) string$(number): Transforms a number into a string format. It digests
exponential notation and percentages!

number_1 = 56
number_2 = 5.6
number_3 = 56%
number_4 = 5e6
n1_str$ = string$(number_1)
n2_str$ = string$(number_2)
n3_str$ = string$(number_3)
n4_str$ = string$(number_4)

# The following line prints "56, 5.6, 0.56, 5000000".
appendInfoLine: n1_str$, ", ", n2_str$, ", ", n3_str$, ", ",

n4_str$

(h) number(a$): Interprets a string as a number.

number_1$ = "56"
number_2$ = "5.6"
number_3$ = "56%"
number_4$ = "5e6"
n1_str = number(number_1$)
n2_str = number(number_2$)
n3_str = number(number_3$)
n4_str = number(number_4$)

# The following line prints "5000062.16" to the screen.
appendInfoLine: n1_str + n2_str + n3_str + n4_str

If the string function you need is not provided by default in Praat (check
the documentation first, though), you can create and use your own functions
(check sections below).

8 Testing and debugging techniques

Writing lines of code produces bugs, and there is nothing we can do to avoid
it15. The only way to avoid adding bugs into our code is to avoid writing scripts
altogether, which implies using someone else’s code and assuming that it’s bug-
free. This also implies, of course, devoting some time to finding out whether the
script that you need already exists and to check that it works properly (that is,
to de-bug it).

Whether you’re going to write your own scripts or you’re using someone
else’s scripts, you’ll need to test and debug the scripts as efficiently as you can
to make sure that your script is doing exactly what it’s supposed to do.

8.1 Send stuff (variable values, results) to the Praat Info
window

Although a bit cumbersome and slow, this is one of the best ways you have to test
or debug a script, both when reading or writing one. Particularly for beginners,

15Different rates of bugs per line of code (LOC) have been estimated.

26

http://programmers.stackexchange.com/questions/185660/is-the-average-number-of-bugs-per-loc-the-same-for-different-programming-languag


I would very strongly recommend that you get into the habit of checking that
you’re getting the results you expect from your variables after every line of code
that you write, unless your line is very very obviously correct.

Failing to observe the content of your variables after writing a line of code
might be very time-consuming afterwards, especially for long scripts and when
the bug you introduced only manifests itself as a problem 25 lines of code later.

Tip 12 : One very typical bug comes from simply trying to reuse a variable and
misspelling it. Then, when you run your script, you get an “Unknown variable”
message from Praat and all hell breaks loose. To prevent this, in Sublime Text,
get into the habit of double clicking the variable that you just rewrote, and
check whether the previous instance of that variable gets highlighted. If it
does, all is good to go. For an example, copy the code below in Sublime Text.
a. Does sugestive number match with the first instance of the same vari-
able?
b. What about the variable called remainder 2?
Naturally, the longer and more obscure your variable names are, the higher
the risk for introducing these bugs.

suggestive_number = 1313
remainder_2 = sugestive_number mod 2
if remainder_2 < 2

# Do something
endif

The two main ways you have to print to the screen are using writeInfoLine
and appendInfoLine, as explained before (see page number 16). Be careful
when using the former because you know that everything that has already been
printed into your Praat Info window will get deleted.

Normally, you’d want to print to screen the current state of a variable or
group of variables, mostly when it forms part of a loop or when its value depends
on conditional jumps16.

Tip 13 : Use “tab$” to separate elements to be printed in a table-looking
fashion. This is particularly useful for inspecting loops. Check the code below
in Praat to get a better idea of its use (before that, copy it to Sublime Text
to check the syntax).

clearinfo
input_number = 142857142867
counter = 1
appendInfoLine: "NUMBER", tab$, "VALUE"
while input_number > 5

16Printing to the screen consumes computer-time. When you print a line or two, your
computer will manage to do that very, very fast and you probably won’t notice the time
involved in printing that line. However, when you want to send hundreds or thousands of
lines to Praat’s Info window, you’ll see that, often, your script uses most of its time on
printing those lines instead of doing whatever else your script is supposed to do. Once you’ve
debugged a section of code containing a loop by printing into Praat’s Info window, I’d suggest
that you delete or, even better, comment-out the line of code that prints the current values
of variables for that loop.

27



appendInfoLine: counter, tab$, input_number ; Check "$tab" here!
counter = counter + 1 ; This is the same as "counter += 1"
input_number = input_number / 1.25

endwhile

TTGYHD 24 (difficulty level: medium): Go to your files and code folder
and open the script “what's wrong with you 1.praat” in Sublime Text,
and then run it using Praat. The script will crash. Praat will give you a
report, including the number of the line where there is a problem. To make
things a little bit harder, the script isn’t commented or indented.
a. Use writeInfoLine and/or appendInfoLine and your common sense
to find the bugs.
b. Fix the script until it works.
c. Leave an inline comment in your script (using “;”) to remind you of each
bug you found.
If you get stuck, check one possible solution in your files and code folder,
called “what's wrong with you 1 SOLUTION.praat”.

You can also print information into the Praat Info window which can be
useful for tracking which processes have been completed in your script. If your
script is rather large or it’s going to deal with a large data set, it’s worth telling
the user what the script is doing and/or when it has finished doing a certain
sub-task. The following code provides an example of what I mean. Try it (first,
copy the code in Sublime Text and select Praat highlighting to read it properly)!

# First for loop.
appendInfoLine: "Going through loop 1..." ; FEEDBACK LINE (FL)
variable = 0
for i from 1 to 400000

random_number = randomInteger(1, 100)
variable = variable + random_number

endfor
appendInfoLine: "Loop 1 finished: variable = ", variable, "." ; FL

# Second for loop.
appendInfoLine: "Going through loop 2..." ; FL
for i from 1 to 400000

random_number = randomInteger(1, 100)
variable = variable - random_number

endfor
appendInfoLine: "Loop 2 finished: variable = ", variable, "." ; FL

# Comparing the results
if variable > 0

appendInfoLine: "Loop 1 wins (more numbers added)!"
else

appendInfoLine: "Loop 2 wins (more numbers subtracted)!"
endif

28



Tip 14 : Provide feedback to your user whenever you know that a task will
take a long time. In the script above, for example, each loop iterates 400,000
times. Depending on the speed of your computer, completing this can take
whatever from a fraction of a second to several seconds. As you can see, before
starting each loop and not inside the loop, the script sends a feedback line
to the user via Praat’s Info window (“Going through loop 1...” and
“Going through loop 2...”), so that the user knows that the script is
doing something, even if it’s taking a long time. You’d normally want to do this
for huge loops and also when your script creates big objects, such as Intensity,
Formant or Pitch objects from long sound filesa.

aInterested in knowing how long does a script take to do whatever it does? Use stopwatch!
Documentation here: http://www.fon.hum.uva.nl/praat/manual/Scripting_6_5_
_Calling_system_commands.html

8.2 Pause a script to observe a given state

Another tool that can be used to debug or test a script is to use pauses. The
function pauseScript17 allows you to momentarily stop your script and print
stuff to a message window that will pop up. See the code below for an example.

variable = 1313
pauseScript: "At this point variable equals ", string$(variable),

".", newline$
variable = variable - (variable / 2)
pauseScript: "Now, the variable equals ", string$(variable), ".",

newline$

TTGYHD 25 (difficulty level: slug): Copy this script into Praat’s script win-
dow and run it. Observe how the two pauses that are defined behave.

Tip 15 : We use newline$ to insert a new line character after our line or text,
so that the message to the user is more readable. The result of adding this line
becomes more evident when using the exitScript function (see subsection
“8.3 Make your script crash if behaved unexpectedly”).

Notice that, whenever pauseScript is used, the script prompts the pop-
up and the message that we define after the “pauseScript” function. Also,
notice how the use “string$(...)” allows us to send numerical information
to the pause pop-up. It is as if we were printing to the screen, but pausing the
script at the same time.

An additional application of pauseScript is to be able to observe which
object is selected at the time that the pause is executed. This can be tremen-
dously important to test if your script needs to select more than one object at
different stages of the task. A very typical bug in a Praat script is trying to ex-
ecute a command for an object different than the one that is currently selected.
If that’s the case, then your script might crash, although if the same command
is available for more than one object (two Sound objects, for example), bugs
could get way more difficult to detect and fix.

17The function pauseScript only became available after version 5.3.82 (before that, pause
was used instead). If you have and older version of Praat, pauseScript will crash your script.

29

http://www.fon.hum.uva.nl/praat/manual/Scripting_6_5__Calling_system_commands.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_5__Calling_system_commands.html


TTGYHD 26 (difficulty level: slug): Go to you files and code folder and
there access the folder named “pause practicing”. Inside, you’ll find the
script called “using pause.praat”.
a. Open that script in Sublime Text and try to understand it without running
it.
b. Once you think you understand the script, run it, and observe how the use
of pauseScript allows us to check which object is selected at a given stage
in the Praat Objects windowa.
c. Use appendInfoLine to investigate the content of those weird variables
named “sound a ID”, “sound b ID”, “sound c ID” and “sound d ID”.
Why are they there? Clue: we use those variables later in the script to do
something.

aFor more on how to select objects and object management, see “9.1. A bit more to say
about navigating the bubble”

8.3 Make your script crash if behaved unexpectedly

Let’s imagine that you’re conducting an automatized production experiment18

to compare jitter19 and shimmer20 values from three age-groups: young adults
(18-30), adults (31-55), older adults (56-80). You prepare a form (see section
“9.3 Interacting with the user: forms; choosing files and directories”) and ask
your users to enter their age, and then, within a larger script, you include the
following lines of code:

age_entered = 16
if age_entered < 18

exitScript: "You need to be over 18 (your age: ", string$(
age_entered), ").", newline$

endif

If you run these lines of code, the script will terminate if the condition stated
in the conditional jump is met. We’re using exitScript to make this happen.
Notice that you can add a message after the “exitScript” function. Just as
we did before for pauses, you can also use string$(...) to introduce the
value of numerical variables defined before (in this case, “age entered”) into
that string.

TTGYHD 27 (difficulty level: slug): Imagine a situation, related with the
type of things you do with Praat, where using exitScript to terminate the
script would be useful. Let’s talk about that.

Using conditional jumps you can test many properties of the information
that’s flowing through your variables, or that is entering via the user’s interven-
tion or via interaction with other files, the outer world and the universe beyond.

18Yes, you can run experiments using Praat scripting. For more information on this check
http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html and http://www.
fon.hum.uva.nl/praat/manual/Demo_window.html.

19About jitter: http://www.fon.hum.uva.nl/praat/manual/Voice_2__Jitter.
html

20About shimmer: http://www.fon.hum.uva.nl/praat/manual/Voice_3_
_Shimmer.html

30

http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html
http://www.fon.hum.uva.nl/praat/manual/Demo_window.html
http://www.fon.hum.uva.nl/praat/manual/Demo_window.html
http://www.fon.hum.uva.nl/praat/manual/Voice_2__Jitter.html
http://www.fon.hum.uva.nl/praat/manual/Voice_2__Jitter.html
http://www.fon.hum.uva.nl/praat/manual/Voice_3__Shimmer.html
http://www.fon.hum.uva.nl/praat/manual/Voice_3__Shimmer.html


When it comes to numbers, for example, you can test whether they are positive
or negative, their size with respect to another variables or themselves, if they
have changed as you were expecting or not, if they are actually numbers (and
not disguised strings acting like numbers: “variable$ = "1"”), etc. If the
content of a variable fails your conditional jump test, then you terminate your
script with exitScript and give feedback to the user regarding the nature of
the problem.

It goes without saying that the same can be done about the content of string
variables: you can compare them, query their length, check whether they have
changed as you want, if they contain sequences of characters that you need
(capital characters, spaces) or, maybe more importantly, that they don’t have
some characters that would mess with your script, etc.

TTGYHD 28 (difficulty level: high): Write a brand new script called
“what's wrong with you 2.praat” that parses the content of a numeric
variable called “my number” and a string variable called “my string$” to
detect the following:
a. The number has to be an integer, positive, bigger than 18 and lower than
120.
b. The string can only start with a lowercase character from a-z, it must finish
in a vowel, and it most be shorter than 10 characters.
c. Make sure you give adequate feedback to your user both if all the conditions
are met or if any condition is violated and you need to terminate your script.
Only after you finish your own version, check two possible solutions to
the problem in your files and code folder. One of these proposed so-
lution scripts (called “what's wrong with you 2 SOLUTION 1.praat”)
uses brute-force string parsing to test the strings, while the other one
(“what's wrong with you 2 SOLUTION 2.praat”) uses regular expres-
sionsa.

aThe actual functions that allow you to use regular expressions are index regex
(a$, b$), rindex regex (a$, b$) and replace regex$ (a$, b$, c$, n). The use
of these functions is explained in the string functions documentation. Regarding regu-
lar expressions in Praat, see: http://www.fon.hum.uva.nl/praat/manual/Regular_
expressions.html

9 Navigate the bubble and beyond: objects, files,
inputs & interactions

One nice thing about Praat is that it can interact with the outer computer-
world in quite useful ways. Do you remember the first section, when we were
talking about exploring available buttons and stuff? Well, four of the common
buttons/options that we saw up there happen to be about Praat interacting
with the computer world around it:

Open >Read from file. . .
Open >Open long sound file. . .
Open >Read Table from tab-separated file. . .
Open >Read Table from comma-separated file. . .
Open >Read Table from whitespace-separated file. . .
Save >Save as text file. . .

31

http://www.fon.hum.uva.nl/praat/manual/Regular_expressions.html
http://www.fon.hum.uva.nl/praat/manual/Regular_expressions.html


It’s a bit obvious here: the first ones have to do with opening files in order
to create objects in Praat (e.g., sounds or tables), the last one has to do with
Praat saving an object into the outer world. Notice that some of these functions
are quite general (the first and last one), and seem to apply to several types of
objects that Praat can read or write as text. Others seem more object-specific,
such as the ones related to tables.

Tip 16 : Apropos saving: there is no such thing as an “autosave” function in
Praat. Praat will never save something unless explicitly instructed to do so.
This means that you could have been working all day, say, segmenting and
labelling a TextGrid and then, God forbid, Praat crashes (or there is a power
fail, or you happen to close Praat, etc.). Well, all those precious hours of work
will be lost, and you’ll be cursing and hating yourself. Get yourself into the
habit of saving those objects that are being edited as often as you can. Saving
often takes way less time than redoing the work!

In the following subsections, we’ll explore some of the ways that we can use
to administer the way in which Praat navigates between objects and how Praat
can access and obtain input from outside.

9.1 A bit more to say about navigating the bubble

We’ve been talking about this quite a bit already. First, we already know that
Praat works by creating objects that we can then access and do stuff with. A
fundamental part of our capability to write scripts for Praat will have to do
with our capacity to navigate objects with precision.

Firstly, there are various ways by which you can refer to a given object. Re-
member that objects in Praat contain several types of information (ID number,
type of object and name), so we can use these parameters to select an object.

TTGYHD 29 (difficulty level: slug): Before continuing, restart Praat. Then,
open the four WAV files that you will find in the folder “selection tests”,
within your files and code folder. Once you do this, you should see the
four objects in your Praat Objects window, in alphabetical order, with ID
numbers from 1 to 4, and the last one should be selected.

Tip 17 : Whenever you open or create a new object, Praat will select it by
default. If you open or create several objects, the last one will always be
selected by default. Keep this in mind when writing your scripts!

There are two ways to select objects. In order to select an object using its
ID number, we can do:

selectObject: 1

Obviously, you need to know that object’s ID number before being able to
write a line like this. This is a bit of a problem (Problem 1), because you
already know that each object has its unique ID, so if you were to remove those
four objects from the Praat Objects window and you open them again (without
closing Praat), their IDs will change and you’ll have objects going from 5 to 8,

32



so if you write the above line in your script Praat will complain and say: “No
object with number 1”.

You can also imagine a similar problem (Problem 2): imagine that you
write a script that (a) opens two files; (b) does something with those objects; (c)
selects the first one with a line like the one above (“selectObject: 1”); (d)
removes that first object from Praat’s Objects window. If you send this script
to your Praat party-friends and they run it immediately after opening Praat,
all should work smoothly. However, if your friend has opened a TextGrid first
and has edited it profusely without saving and then runs your script, your script
will open the two objects, do stuff with them, select the first object via its ID
(object ID number 1 = the TextGrid object!) and remove it, along with your
friendship.

You can also select an object by its name, which is a combination of the type
of object plus the name of the file opened or the name that you provided when
creating the object. This type of selection would look like this (don’t forget the
double quotation marks when doing this):

selectObject: "Sound c"

To use this method, just like with the IDs, you’ll need to know the full name
of your object in order to select it, which can be a bit of a hassle. Also, this
method suffers from a critical problem (Problem 3): if you were to reopen the
same files, for example, you’d see that the new four objects that have been
opened have the same names than the previous four objects. If you have these
eight objects open, and the names are repeated, the line of code above would
only select the second “Sound c” object, and never the first one. In short, if
two objects have the same name and you select them by using a line as the one
above, only the second one can be selected.

So far, it looks as if selecting objects is a real pain, because: (a) we need to
know for sure the ID or name of an object in order to select it, and to do that,
we’ll need to look at the Praat Objects window; and (b) if you reopen the same
object, it will have a different ID and you can’t access the previous same object
using its name.

In order to circumvent all these problems, we will use (now and forever) a
simple trick available in Praat: whenever you open a file or create an object in
your script, you’ll save that object’s ID in a variable with a meaningful name.
Given that each object has a unique ID, there is no risk of selecting the wrong
file afterwards, as long as you use the correct variable. This would look like this
in your script:

# When reading a file (the path to the file is relative):
sound_ID = Read from file: "..\selection_tests\a.wav"

# When creating an object:
intensity_ID = To Intensity: 100, 0.0, "yes" ; See tip below.

# Selecting the objects one after the other:
selectObject: sound_ID
selectObject: intensity_ID

33



In the script above, we are opening a WAV file (via “Read from file:
...”) and we’re assigning the ID of the resulting object to a numeric variable,
called “sound ID”. The name of that variable, of course, can be anything you
like, but I suggest keeping those names informative and relevant. Then, the
script creates an Intensity object via “To Intensity: ...”, and assigns the
ID of that resulting object to a variable called “intensity ID”. Afterwards,
when the script needs to select those objects, we use the variables “sound ID”
and “intensity ID” to make the selections.

This elegant technique solves all the problems listed above, because (a) you
don’t need to know, find out or remember the names or IDs of the objects; (b)
it doesn’t matter if you already have more objects opened in the Praat Objects
window; (c) it doesn’t matter whether the names of the objects are repeated,
because IDs are unique.

To summarise, then, whenever you do something in a Praat script that
results in a new object in your Praat Objects window (when opening a file,
when creating an object, etc.), this technique can be used to assign the ID of
that new object to a variable, and then you can use the variable to select the
objects you need.

Tip 18 : You might be wondering how we know what to write when we’re
creating an object in Praat, like we did in the example script above in the 4th

line:

>intensity ID = To Intensity: 100, 0.0, "yes"

It seems as if the To Intensity... function requires some arguments to
work (just like the other functions we’ve seen so far). To know which arguments
are required, we’ll have to explore that function, but before, a little important
detour.
If you go to the Praat Objects window and select a sound, you’ll see that
some of the buttons that appear end in nothing (e.g., Play), others end
with a hyphen (e.g., Draw -) and others end with three dots (e.g., To
Intensity...). The first type of command (Play), can be accessed in
a script just by writing the name of the function (Praat is case sensitive, so
mind your uppercases and lowercases), as in the following line (without the
“>”; that’s just to show that that’s a line of code here):

>Play

The buttons that end in a hyphen (like Draw -) aren’t really commands,
but collections of commands, so you can’t access them from a script. You
can only access them via clicking, and the result of that is just that you see
more buttons to appear. The commands that end in three dots, such as To
Intensity..., are functions that will require arguments to work. In our
script above, this functions requires 3 arguments (end of the detour).

34



To know what those arguments are, you can either go to the documentation in
Praat, or go to the Praat Objects window, press that button and take notice
of the arguments required. If you were to do that now (do it!), a window will
appear and you’d see that the first argument corresponds to the “Minimum
pitch (Hz)” value, the second to the “Time step (s)” and the third one to
whether or not we want to subtract the mean. This third option is different
because it’s a Boolean argument. Numeric arguments should be written in
a script as such, Boolean values (“yes” / “no” options) should be entered as
“yes” or “no” between double quotation marks (field types are mandatory;
you have to provide an argument for every required Boolean argument), string
values should be entered between quotation marks, and non-Boolean lists of
options (alternatives) via the name of the option that you want written between
double quotation marks. You have to use commas to separate each argument.

TTGYHD 30 (difficulty level: slug):
a. Go to your Praat Objects window and select a sound object. Then, using
your mouse, select Analyse periodicity - >To PointProcess (extrema). . . . A
window will open asking for arguments. How would the default selected options
need to be written in a Praat script? Test your line to see if it works.
b. Still with a sound selected, select Annotate - >To TextGrid. . . . A window
will open telling you the required arguments for this function. How would the
default options need to be written within a Praat script? Test your line to see
if it works.
c. Go to New >Tables >Create Table with column names. . . . Write a Praat
scripting line that creates a Table object named “awesome table”, with 5
rows and the column names by default. Test your line of code to see if it works.
Save your script inside the folder named “arguments”, and name
it “arguments.praat”. Check the solution for this exercise in
“arguments SOLUTION.praat”, which can be found in the “arguments”
folder, within files and code. In the solution, the path to the sound file is
relative.

What were we talking about before these huge but fruitfully distracting
excursions? Oh, yes, about selections. There are some other ways to obtain the
ID number or name of a given object in Praat. As long as the object you’re
interested in is selected, you can use selected("type of object") and
selected$("type of object"). The first function allows you to get the
ID number of the selected object, but you have to specify the type of object of
the current selection21. The second function provides the name of the object
being queried, which can be saved into a string variable; again, the type of
object has to be specified. Examples are shown below.

# Creating dummy sound object from formula:
Create Sound from formula: "sineWithNoise", 1, 0, 1, 44100, "1/2 *

sin(2*pi*377*x) + randomGauss(0,0.1)"

# Using functions to obtain the object’s ID and name and assign to
variables:

21There are many type of objects in Praat. Some of the most common ones are: Sound,
TextGrid, List, Table, Formant, Pitch, Spectrum and Pulses, but there are many, many more.
For a full list, go to Praat and select Praat >Technical >List readable types of objects.

35



id_number = selected("Sound")
name$ = selected$("Sound")

# Append line with the content of the previous variables:
appendInfoLine: name$, tab$, id_number

If you use these functions and ask for an object type which is not included
in the current selection that you have, Praat will complain and terminate your
script. Also, if you have more than one object of the same category selected,
Praat will only provide the ID number or name of the first one selected.

Now that we know how to select a unique object through its ID (or name),
we can do more stuff. You can select more than one object, for example, by
using plusObject. This has to be written like this:

# Option A (don’t use this method)
selectObject: 1
plusObject: 4
plusObject: 7

# Option B (this is how you should do it!)
selectObject: sound_ID
plusObject: intensity_ID
plusObject: table_ID

You can use this function to select as many objects as you need, as long
as you’re able to provide their unique IDs. Once all these objects have been
selected, you can do to all of them whatever you want and is available as an
option for that particular combination of objects (for example: Remove).

You can also deselect a particular object, by using minusObject and the
name or ID of the object, as in the following mock script:

selectObject: sound_ID
plusObject: intensity_ID
minusObject: intensity_ID

Finally, you can use the select all function to, well, select all the objects
presently in your Praat Objects window. Use this function wisely! You don’t
want to write a couple of lines of code like the following unless you like to live
in danger:

select all
Remove

36



Tip 19 : A good practice when writing scripts is to remove from your Praat
Objects window those objects that you won’t use any longer. To do this,
however, you must be sure that: (a) you’re removing the right object; and (b)
that you won’t need that object any longer.
Depending on the capabilities of your computer, it is perfectly possible for
Praat to deal with a huge number of objects in the Praat Objects window – by
default, up to 10.000 –, but you probably don’t want that cap to be reached,
for several reasons:

(a) You might run out of RAM memory before running out of available objects;

(b) If you surpass the 10.000 cap, Praat will complain and crash;

(c) Are you really using those 10.000 objects at the same time? Isn’t there
even a couple thousand that you could live without for the time being?

9.2 Accessing objects outside the script

We’ve been doing this all this time: we’ve been opening files a lot. The result
of that has been that new objects start to appear in our Praat Objects window
and then we can do things with them. In order to open a file via the Read from
file. . . function, that file has to be one of the types of file supported by Praat22.
If the file is not one of the files that Praat can read, it will complain with an
error message.

Remember that there are other methods to open files in Praat, such as Read
Table from comma-separated file. . . , so some of the files that can’t be opened
with the Read from file. . . function, such as “.csv” files, can be accessed with
alternative and more specific functions.

Tip 20 : You can use fileReadable(fileName$) to assess whether a file
is readable. This function provides 1 (true) if the file exists and can be read
and 0 (false) if not.

You can use absolute and relative (to the script) pathnames to define the
location of a file you want to access from Praat:

# Absolute path file:
table_ID_abs = Read Table from comma-separated file: "F:\04.

_2014_06_Praat-Workshop_Antwerp\files_and_code\opening_files\
data\just_data.csv"

# Relative (to the script) path file:
table_ID_rel = Read Table from comma-separated file: "data/just_data

.csv"

TTGYHD 31 (difficulty level: slug): You can try this script by going to the
“opening files” folder, within your files and code folder, and opening
“opening table.praat” in Praat and then running it. Remember: open
the script in Praat (not copying; opening) and then run it. The absolute path
should make the script crash unless you have a path exactly like that on your
computer.

22By the way, Praat completely ignores the extensions of the files while accessing them (an
extension is the “.wav”, “.mp3”, “.doc” bit that specifies the type of file).

37



Tip 21 : Did you notice the different types of slashes (“slash” vs. “backslash”)
in our script above? Back in time, the type of slash used for the paths were
dependent on whether you were using Windows, Mac OS or a distribution or
Linux. Now, Praat handles both types of slash in pathnames, which is rather
nice.

Using absolute path files has the advantage of making it more difficult to
open the wrong file, but it makes your script more difficult to move to another
computer, because that pathname probably doesn’t exist in other computers.
Using relative path files makes your script more portable, which is very much
desirable, but it also makes opening the wrong file more likely. While some
people are strong-minded about this, I would recommend you to use the paths
that better suit your requirements.

Take into account that relative paths only work if Praat knows the “relative
to what” part. Let’s say you close Praat now and open it again all fresh and
nice. Go to Praat >New Praat script and then copy the line of code below and
run that script (it should be only one line in your script!).

table_ID = Read Table from comma-separated file: "data/just_data.csv
"

Unless you’re very weird, Praat should give you an error message which
means, essentially, “I couldn’t find the path that leads to that file, so I couldn’t
open it”. That’s because you haven’t told Praat the “relative to what” part,
and Praat is assuming it should apply that relative path to its default folder
location, which is the folder where you keep the programme’s “Praat.exe” file.

In order to tell Praat the “relative to what” part of the path, you can either
provide the full path in our script (which is not really a solution) or open
the script from within a folder where that path makes sense. This is simpler
that it sounds: the script “opening table.praat” is saved in a folder called
“opening files”, and “just data.csv” is saved in a folder called “data”,
inside the “opening files” folder. If you open “opening table.praat” in
Praat (not copying and pasting, but opening), then Praat will reset its working
folder as the folder where your script is located, and all of a sudden the relative
path makes sense, because relative to the working folder, the path works. As a
matter of fact, if the script and the data file were kept in the same folder, and
you open your script in Praat (again: opening, not copying and pasting) you
could just write:

table_ID = Read Table from comma-separated file: "just_data.csv"

Tip 22 : Having your scripts and the files it requires within the same folder
is a good idea for beginners. For complex situations, with many files being
opened and many others being saved at different stages, relative paths to
different folders are more effective, although you have to be careful to write
your relative paths correctly.

Besides reading all sorts of files and being able to save all its objects, Praat
is able to perform other interesting tasks with files23:

23For more about files, see: http://www.fon.hum.uva.nl/praat/manual/Scripting_
6_4__Files.html

38

http://www.fon.hum.uva.nl/praat/manual/Scripting_6_4__Files.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_4__Files.html


(a) writeFileLine: If the file exists, it will delete all the lines that are
already in that file and then it will write the line that you have specified
after the function. If the file doesn’t exist, it will try to create it and then
add the line that you specified. In the script below, the file to be modified (or
created) is “myFile.txt”, and the line to be added is specified afterwards.

writeFileLine: "myFile_A.txt", "Cute line to be added."

(b) writeFile: It does exactly the same as writeFileLine, but it doesn’t
add a newline symbol at the end of the line. The newline symbol is what
commoners would call “an Enter” (they mean, the result of pressing “Enter”
in a word processor).

writeFile: "myFile_B.txt", "Gorgeous line to be added."

(c) appendFileLine: It appends the specified line of text to the end of an
already-existent file.

appendFileLine: "myFile_B.txt", "Another gorgeous line to be
added."

(d) appendFile: Does the same as appendFileLine, but without adding
the newline symbol.

appendFile: "myFile_B.txt", "And yet another gorgeous line to be
added."

(e) createDirectory: It creates a directory with the specified name and in
the specified path, if the directory doesn’t exist. Otherwise it does nothing.

directory_name$ = "hyper_praat"
createDirectory: directory_name$

(f) deleteFile: It deletes the specified file or directory, if it exists.

deleteFile: "hyper_praat"
deleteFile: "myFile_A.txt"
deleteFile: "myFile_B.txt"

TTGYHD 32 (difficulty level: slug): In your files and code folder, there
is a folder called “creating modifying”. Write a Praat script called
“creativity.praat” that is able to:
a. Create a folder inside “creating modifying” called “im creative”.
b. Create a text file called “to be edited.txt”.
c. Appends a list of the even numbers between 0 and 50. The script will have
to add the numbers one by one, each in a new line.
d. It tells the user when the script has finished doing all its deeds.
If you get stuck (but you have to try!), check the solution in
“creating modifying”, called “creativity SOLUTION.praat”.

39



9.3 Interacting with the user: forms; choosing files and
directories

The most efficient way to interact with your user is to create a form. In Praat,
a form is a pop-up that occurs at the beginning of a running script (irrespective
of where in your script the form was actually placed) that is capable of asking
for information from the user and then assigning that information to numerical
and string variables for later use.

Whenever you need something from the user, use a form. This will happen
often in your life if you write scripts, because you may want to ask several
things from users: which files they want to analyse/modify/create, all sorts of
parameters of interest, sociolinguistic information, etc. Also, using a form can
prevent some common problems such as the difficulty of using relative paths to
access files: if you make the users specify the path, then it’s their fault if they
choose the wrong one.

To write a form24, you declare it by using form and you close it by using
endform. The displayed form can have a title, which has to be written (without
quotation marks) after form. Everything between the opening and closing
statement, should be specified as a field type. The field types need to be declared
at the start of a line, then you should specify the name with which they will
appear in the pop-up window (which is going to be used as the variable name
as well), and then you can optionally include a default value for the user. For a
simple example, see the following form:

form User’s input
comment Please enter the following information:
sentence Name:
integer Age:
choice Sex: 1

button Female
button Male

real Smoothing_factor: 100 (= average)
endform

This form will pop-up as shown in Figure 2, below. You can see that the
pop-up is titled “Run script: User’s input”. Then, several field types appear.
First, there is a comment, which is displayed as text in the form. If you write
a line that is too long, it won’t be automatically trimmed to fit the size of the
form, so you have to try to keep these comments short or use several comment
field types, although that doesn’t look very good.

Next, there is a field type called sentence, after which the users are ex-
pected to write their name; then the age, which has to be entered into an
integer field type. After that, there is a choice field type, whose variable
name is Sex. Two choices are provided (“Female” and “Male”, and the form
by default selects the first one). Finally, there is a real field type, that takes
any real number.

Once the user has entered his/her responses to this form, you can access that
information via the variables that you’ve used, although you have to modify the
names a bit for it to work. The variables for this particular form, are: name$,

24Documentation here: http://www.fon.hum.uva.nl/praat/manual/Scripting_6_
1__Arguments_to_the_script.html

40

http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html


Figure 2: Example of a Praat form window with four field-types.

age, sex or sex$ (the first one returns the number of the option that has been
chosen – 1 or 2, in this case; the second one returns the string of the answer –
“Female” or “Male”) and smoothing factor.

writeInfoLine: name$
appendInfoLine: age
appendInfoLine: sex, tab$, sex$
appendInfoLine: smoothing_factor

Notice several things: first, all the capitals that were visible on the script
and form are gone when we call those variables; the same can be said of
the colons that were written after each variable name in the script and that
were visible in the form. Also, a variable that was written in the script as
“Smoothing factor:” appears on the screen as “Smoothing factor:”
and then is accessed as “smoothing factor”. Finally, notice that you can
add a short comment after an option (the “(= average)” in the Smoothing
factor field type). This is ignored by Praat when parsing the responses from the
form, but is useful to guide the user.

The complete list of field types is the following: real (for real numbers),
positive (for positive numbers), integer (well, for integers), natural (for
positive integer numbers), word (for strings without spaces; “yes indeed” be-
comes “yes”), sentence (for short strings), text (for long strings), boolean
(for check boxes where 0 is off and 1 is on), choice (which shows a radio
box; has to be followed by. . . ), button (two or more buttons for the radio box
declared in choice), and comment (for a line of text). Instead of choice +
button, you can also use optionmenu and option, which works in the same
way but use less space in the form.

41



TTGYHD 33 (difficulty level: medium): Let’s create a form!
a. Create a Praat script called “my first form.praat” containing a form
that asks the user to fill in three field types. The form should be able to obtain
a string (without spaces), an integer and the answer to a Boolean or multiple
choice question.
b. Write more code so that somehow your script does something depending
on the content of the inputted variables.
c. Provide feedback to the user regarding the result of whatever you did with
the aforementioned variables.
You can check for a possible solution to this problem in your
“files and code” folder, named “my first form SOLUTION.praat”.

If you need your user to choose a file or a directory (this happens a lot),
so that you can later access those paths, you can always ask him/her to write
the absolute or relative path through a sentence field type and then use
that string as your path. This, however, sounds like a bit too much effort for
your user. It’s easier if you make your script prompt a file-opener pop-up via
chooseReadFile$, as shown below:

file_name$ = chooseReadFile$: "Open a table file"
if file_name$ <> ""

table = Read Table from comma-separated file: file_name$
endif

As you can see from the first line, the result from chooseReadFile$ needs
to be assigned to a string variable. You can add a message to the user after
the colon. This message gets displayed in the top of the pop-up window. When
this line of code is read, a file selector window will appear, with (in this ex-
ample) “Open a table file” as the title. If the user clicks Open, the variable
“file name$” will contain the name of the file that the user selected; if the
user clicks Cancel , the variable “file name$” will contain an empty string.

If you want your user to choose where to save a file (from an object that
exists in the Praat Objects window), you can use:

selectObject: sound_ID
file_name$ = chooseWriteFile$: "Save as a WAV file", "sound_ID.wav"
if file_name$ <> ""

Save as WAV file: file_name$
endif

This code will select an object from the list of objects and then it will assign
to a string variable the result of the selection from the user (the user will be able
to modify the “sound ID.wav” name, which is prompted in the dialogue). As
with the previous function, it’s perfectly possible to create a conditional jump
to assess whether the user selected something and pressed Open, in which case
“file name$” will contain a string, or Cancel , in which case the string will
contain nothing.

42



TTGYHD 34 (difficulty level: medium): Create a script inside the
folder “outside the bubble”, which is in files and code”, to prac-
tice chooseReadFile$ and chooseWriteFile$. Your script, which you
should call “outside the bubble.praat”, must do the following:
a. Make the user select a Sound and a TextGrid file. Use a message to suggest
to the user to select those files from the folder “outside the bubble”. If
the user selects no files, make terminate the script and send a message to the
user.
b. Make the script select both objects in the Praat Objects window and to
prompt a View & Edit window. As soon as the prompt occurs, insert a
pauseScript including a message to the user telling him/her to modify the
TextGrid. Once the modification has been made, the user must press Con-
tinue.
c. Make the script ask the user to choose a location and name to save the modi-
fied TextGrid. Also, suggest that the user modifies the name of the original file.
The original name in this case is “textgrid object.TextGrid”, so the
modified version you suggest could be “textgrid object mod.TextGrid”.
If the user selects no location or name for the new file, make the script termi-
nate and send a message to the user.
d. Tell the user when the script has finished.
If you, after trying decently hard, can’t come up with a solution for this script,
take a look to “outside the bubble SOLUTION.praat”.

Finally, you can make your user select a directory, via chooseDirectory$,
which works similarly to the previous functions:

directory_name$ = chooseDirectory$: "Choose a directory to save your
stuff."

if directory_name$ <> ""
Save as WAV file: directory_name$ + "/sound.wav"

endif

9.4 Include other scripts and procedures

Another way to access information from outside the script is to include other
scripts and procedures into your script. Procedures? We haven’t talked about
procedures yet (we will in “10.1. Procedures: writing your own functions”).
For the time being, imagine procedures as being pieces of code that might take
arguments to carry a (normally very) specific task. You can think of them as
small scripts that you can use inside your script whenever there is a task that
you have to do several times (not in the sense of a loop, but in the sense of a
task you find yourself doing frequently in your script).

Regarding scripts being included in other scripts, let’s first look at the snip-
pets of code below. The first code contains a short script with a form that
requires the user to enter his/her age (in years) and select his/her sex. Once
the form has been completed, the script clears Praat’s Info window and then
appends a line of text in Praat’s Info window which includes the content of the
variables defined in the form: age and sex (the last one as a string).

43



# FIRST PIECE OF CODE ("script_being_called_1.praat"):
# Form to obtain information from the user:
form Enter your age and sex

comment Please fill the following field types:
integer Age: 00 (= in years)
choice Sex: 1

option Male
option Female

endform
clearinfo
appendInfoLine: "Your age is: ", age, ". Your sex is: ", sex$, "."

This next script does only one thing: it calls and runs the previous script
called “script being called 1.praat”, and then another called “script
being called 2.praat”. You can see that there are two uncommented lines

containing the function runScript. This function requires only one mandatory
argument, which is the name of the Praat script to be called. Besides this
argument, you should enter all the values required if the script being called
contains a form. In the case of the scripts being called in the code below, the first
script requires two arguments: age (in years) and sex (as string). The second
script being called doesn’t require any arguments (you can inspect this second
script inside your files and code folder, inside “script in script”).

# SECOND PIECE OF CODE ("script_in_script.praat"):
runScript: "script_being_called_1.praat", 29, "Male"
runScript: "script_being_called_2.praat"

Unfortunately, you can’t access the content of variables that exist in the
script being called (such as “age$” from “# FIRST PIECE OF CODE [...]”)
in the script that is doing the call (see “# SECOND PIECE OF CODE [...]”).
If you really need to access the content of those variables, what you need is a
procedure.

TTGYHD 35 (difficulty level: slug): Open in Praat the script called
“script in script.praat”, which is saved in the folder “script
in script”, inside your files and code” folder.
a. Can you anticipate what should happen before running the script?
b. Play with the scripts until you feel comfortable calling scripts from within
other scripts.

Using a procedure inside a script is quite easy. You only have to use
include and then provide the name of the procedure that you want to include
(be careful so that the procedure and the script are in the same folder; other-
wise, provide the correct relative or absolute path). The following piece of code
is a procedure called “years in months”. This procedure has been saved in a
file named “procedure to be included.proc”, which you can find inside
“include procedure”, which is inside your files and code folder.

# Declaring procedure "years_in_months", which takes only one
argument: "years".

procedure years_in_months: years
# What the procedure does.
total_months = years * 12

44



appendInfoLine: "Your age in months is: ", total_months, " months
."

endproc

This procedure takes an argument from the user (in a variable called “years”)
and then does calculations with that variable and sends the result of that cal-
culation to the Praat Info Window. The next piece of code shows how to
include this procedure (which is located in a different file) in a script called
“script which includes procedure.praat”, which has been saved in
the same folder as the previous file.

# Clearing Praat Info window.
clearinfo

# Including the procedure in this script:
include procedure_to_be_included.proc

# Using the procedure four times:
@years_in_months: 11
@years_in_months: 22
@years_in_months: 29
@years_in_months: 105

These lines of code clean the Praat Info window, then include the procedure
using include and the name of the file where the procedure is, and then use
that procedure four times.

TTGYHD 36 (difficulty level: slug): Open in Praat the script “script
which includes procedure.praat”, which is saved in the folder

“include procedure”, inside your files and code folder.
a. Can you anticipate what should happen, before running the script?
b. Play with the scripts until you feel comfortable calling procedures from
within other scripts.

10 Procedures and arrays

In this last section, we’ll be dealing with procedures and arrays, which are tools
that the common mortal users of Praat don’t normally employ, but that are
nonetheless quite easy to use and to understand, and are very useful. Let’s
start with procedures, about which we’ve been talking a bit in the previous
sections.

10.1 Procedures: writing your own functions

As we said above, procedures25 are scripts inside your scripts, which are par-
ticularly useful when there are some lines of code that you find yourself using
repeatedly in your script (or that you think you’ll be using again another time)26.
Let us think of an example. Imagine that you’re writing a script in which you

25Procedures are similar (although not identical) to what in other languages such as Python
and R is called “function”.

26Documentation here: http://www.fon.hum.uva.nl/praat/manual/Scripting_5_
5__Procedures.html

45

http://www.fon.hum.uva.nl/praat/manual/Scripting_5_5__Procedures.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_5_5__Procedures.html


need to process some strings in different ways, and you need to do this several
times, but in different parts of your script (so that a loop doesn’t really solve
the problem). In that case, you should write a procedure.

Just as a loop or conditional jump, a procedure declaration has to be opened
and closed, and then the content of the procedure should be written between
these two entities. All the lines of code that you write inside the procedure will
be run by your script whenever you call the procedure. Also, and this is quite
important, procedures can take arguments.

Let’s consider an example:

clearinfo
# Calling the procedure several times.
@dealing_with_strings: "crocodile", 5
@dealing_with_strings: "hippopotamus", 10
@dealing_with_strings: "immateriality", 3

# Defining the procedure.
procedure dealing_with_strings: string_to_parse$, how_short

# Parsing the string
string_to_evaluate$ = string_to_parse$
short_string$ = left$(string_to_evaluate$, how_short)

# Reporting to the user:
appendInfoLine: "The short version of the string ",

string_to_evaluate$, " is: ", short_string$, "."
endproc

In this script, after clearing the Praat Info window, a procedure called
“dealing with strings” is summoned three times27. To call the proce-
dure, an at symbol (“@”) must be used, and all the arguments required by the
procedure must be provided as well. This procedure requires two arguments: a
string and then a number.

This is only clearly visible when the actual procedure is analysed. The pro-
cedure is declared with procedure. Then, the name of the procedure is defined
(in this case, “dealing with strings”). All the names of the variables that
the procedure will use (the arguments) have to be declared after the colon (in
this case, “string to parse$” and “how short”). Notice that you must
specify whether your arguments will take string or numeric values.

The procedure is closed via endproc and everything between “procedure”
and “endproc” will be run every time the procedure is called. Notice that the
arguments that were provided at the beginning of the procedure are indeed used
inside the procedure (that’s the whole idea!).

27Yes! Procedures can be summoned “before” being defined in your script. What actually
happens is that Praat scans your whole script to see if it contains procedures or if procedures
are being included (see section “9.4. Include other scripts and procedures”) and starts parsing
the whole script again from top to bottom only after it has acknowledged their existence (if
they exist).

46



TTGYHD 37 (difficulty level: high): Modify the script from above so that:
a. The procedure also evaluates whether a given one-character-long
string matches the first character of “string to parse$” and whether
another given one-character-long string matches the last character of
“string to parse$”.
b. The procedure should give feedback to the user regarding these matches.
c. Name your script “procedure example.praat” and save it in your
files and code folder.
If you get stuck after trying, examine the script “procedure example
SOLUTION.praat”.

Once the procedure has been run at least once, you can access from outside
those variables used inside the procedure. For example, you could write a new
line of code after the procedure with the following:

appendInfoLine: short_string$

Notice that this line of code contains a variable (“short string$”) that
has never been used outside the procedure yet, but given that the procedure
already ran, it can be accessed now because this variable has been defined and
it contains a value. The value contained by this variable will correspond to the
value that has been assigned to it inside the procedure the last time that the
procedure was called.

In the lines of code below, the seventh line will print to Praat’s Info window
“imm”, because we are calling the variable “short string$” after the second
time we called the procedure.

# Clearing Praat Info window.
clearinfo

# Calling the procedure several times:
@dealing_with_strings: "hippopotamus", 10
@dealing_with_strings: "immateriality", 3
appendInfoLine: short_string$ ; <-- CHECK THIS LINE AND MOVE IT

AROUND.

# Defining the procedure
procedure dealing_with_strings: string_to_parse$, how_short

# Parsing the string
string_to_evaluate$ = string_to_parse$
short_string$ = left$(string_to_evaluate$, how_short)

endproc

TTGYHD 38 (difficulty level: slug): What would be printed to the screen if
we were to swap the fifth and sixth lines of code in this script?

Those variables that can be used outside a procedure are called global vari-
ables. The fact that variables that are used inside a procedure can be used
outside can be very useful (and, thus, desirable) or it can be a hindrance, de-
pending on what you want to do and how tidy you code.

If the names of your variables are recycled and you are using the same
variable names inside and outside your procedure (don’t!), the fact that the
variables declared inside the procedure can be used outside of it can become a

47



big problem and a source for bugs. Also, let’s imagine that you send a procedure
in a “.proc” file to your Praat-loving friends for them to include in their scripts,
and some of the variable names are unknowingly the same in your procedure
and your friends’ script. Things can become very confusing and dangerous.

In order to restrict those variables used inside the procedure to the procedure
itself, we can use variables whose scope is local. This is a way to play safe, so
I would recommend you to use local variables for all those variables that only
fulfil a role inside the procedure and reserve global variables for those very few
that you clearly need to be using outside your procedure (this is still not the
safest way to go, though! Do check “Tip 23” for the ultimate safe trick to access
local variables from procedures).

To define a local variable you need to include a full stop symbol before the
name of the variable, as shown below:

clearinfo
# Calling the procedure several times:
@dealing_with_strings: "hippopotamus", 10
@dealing_with_strings: "immateriality", 3

# Defining the procedure
procedure dealing_with_strings: .string_to_parse$, .how_short

# Parsing the string
.string_to_evaluate$ = .string_to_parse$
.short_string$ = left$(.string_to_evaluate$, .how_short)

# Reporting to the user:
appendInfoLine: "The short version of the string ", .

string_to_evaluate$, " is: ", .short_string$, "."
endproc

These variables now have a local scope, which means that if we try to use
them outside the procedure, as in the line below, Praat will give us an “Unknown
variable” error message.

appendInfoLine: .short_string$

Tip 23 : You can access the content of local variables outside your procedure
if you call the variables as follows (this line only applies to the script from
above, obviously):

>appendInfoLine: dealing with strings.short string$

This line will only work if the procedure has been called once, and it
will have the same value as the last time the procedure used the variable
“short string$”. This is by far the safest way to access variables from in-
side a procedure, because (a) all the variables inside the procedure can remain
local, and (b) it forces the scriptor to be very explicit when calling a local
variable by using the name of the procedure.

48



TTGYHD 39 (difficulty level: high): Since Praat’s version 5.3.44, Praat’s syn-
tax changed a bit to, amongst other things, become variable-substitution-free.
Several transformations have taken place since then and some old scripts might
not run in newer versions of Praat if some new commands and/or functions
are useda. The changes in the syntax became stable after version 5.3.65, so
any version of Praat older than 5.3.65 should deal well with the new syntax.
a. Write a stand-alone procedure (a Praat script ending in “.proc”) called
“version check.proc” and save it inside the folder “version check”,
inside your files and code folder.
b. Your procedure should aim to obtain the current version of Praat and
terminate the script if the version is older than 5.3.65.
c. You’ll need one of Praat’s predefined variablesb: praatVersion or
praatVersion$ (I recommend you to use the former).
d. Create another short script with any dummy lines of code (print something
to the Praat Info window, for example), but make it call your procedure as the
first thing it does (see section “9.4. Include procedures and other scripts”).
Save this script as “include variable check proc.Praat” inside your
“version check” folder, which is inside your files and code folder.
e. Make sure that your procedure works by modifying the conditional jump
inside the procedure to ask for different versions of Praat (for example, make
your procedure terminate the script if the version is too new, just for the sake
of testing your procedure and script).
If you get stuck, check some proposed solutions inside your “version check”
folder, in “include variable check proc SOLUTION.praat” and in the
procedure “version check SOLUTION.proc”.

aOlder scripts should always run in newer versions of Praat, but newer scripts will not
always run in older versions.

bDocumentation here: http://www.fon.hum.uva.nl/praat/manual/Scripting_
5_1__Variables.html

10.2 Arrays: a variable with many coexisting values

An array is a data type that contains a collection of elements (values), which
can be accessed via indices. Praat has numeric and string arrays28. Arrays are
useful whenever you need the same variable to contain several values (either
numerical or string) at the same time. For example, arrays are a good way to
store results of iterative processes, so that you can access all the steps of an
iterative process even after it has finished and also from outside the process
declaration.

In order to use an array, you have to add square brackets after your variable
name. Inside those square brackets, specify the index where you’ll assign a
value and then assign the value. If we wanted to save the numbers 10, 15 and
20 into the indices 1, 2 and 3 of an array called “my numbers”, we could do
the following:

my_number [1] = 10
my_number [2] = 15
my_number [3] = 20

28Documentation here: http://www.fon.hum.uva.nl/praat/manual/Scripting_5_
6__Arrays.html

49

http://www.fon.hum.uva.nl/praat/manual/Scripting_5_1__Variables.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_5_1__Variables.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_5_6__Arrays.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_5_6__Arrays.html


In order to use these variables later, you have to refer to the variable includ-
ing its index. To see the content of the three values of the “my number” array,
you could write something like this:

for i from 1 to 3
appendInfoLine: my_number [i]

endfor

String arrays work in the same way. Naturally, you can use these arrays
inside other functions and loops, as shown below:

for i from 1 to 5
string_array$ [i] = string$ (i) + "_now_as_string"
appendInfoLine: string_array$ [i]

endfor

TTGYHD 40 (difficulty level: high): Inside your files and code folder,
go to “array training” and create a script called “array training
.praat” that does the following:
a. It asks the user to find and open the file called “numbers 1-99
words.txt” – which is located in your “array training” folder – as a

String object. You’ll need to use the Read Strings from raw text file. . . com-
mand.
b. It goes through the list of strings (clue: you’ll need something from Query
-) and saves each string inside a specific index within a Praat string array.
c. It calculates the length of each string and saves those results inside consec-
utive indexes of a numeric array.
d. It prints to the screen, separated by tabs, a counter or iterator that goes
from 0 to 99, the string (extracted from your string array), and the length of
the string (taken from your numeric array).
If you get stuck, take a look at “array training SOLUTION.praat” to
see an example of how this can be done.

11 Where to look for more information?

To begin with, try to use Praat’s documentation as much as you can. Although
sometimes it’s not very easy to follow, it contains all you could ever need to
know regarding Praat’s usage and scripting. Given that all the documentation
can be found online, sometimes is faster to search for something online than
using the manual that’s included in Praat (start your search with something
like “praat script . . . ”).

I can also recommend José Joaqúın Atria’s tutorial on Praat scripting, which
can be found in his website, and there are more manuals for beginners here.

There is a quite useful Praat User List, where many questions, both simple
and complex, have already been asked, so you might find what you’re looking for
there. If you join this group, you can subscribe to receive aggregated summaries
of all the new questions/answers made within a certain time range in the form
of a digest. Reading these discussions is very useful to broaden your knowledge
of Praat’s capabilities and uses; also, you get to know current trends in the
development of the software and, hopefully, you get to contribute as well.

50

http://www.ucl.ac.uk/~ucjt465/assets/presentation/atria.psp.pdf
http://www.fon.hum.uva.nl/praat/manualsByOthers.html
https://uk.groups.yahoo.com/neo/groups/praat-users/info


12 Acknowledgements

I’d like to thank the following people who have contributed to create and improve
this manual: thanks to Michèle Pettinato and Steven Gillis, for inviting me to
teach this Praat scripting workshop in the Department of Linguistics of the
University of Antwerp; many thanks to Albert Lee and Sonia Granlund for
proofreading the entire document (v. 1.2), and to Ilke De Clerck and again
to Michèle for spotting some writing problems. Also thanks to JJ Atria and
Paul Boersma for helping me to correct/update some small problems present in
version 1.4. of this manual.

51

https://www.uantwerpen.be/nl/personeel/michele-pettinato/
https://www.uantwerpen.be/nl/personeel/steven-gillis/
http://www.homepages.ucl.ac.uk/~ucjtkll/
http://www.ucl.ac.uk/psychlangsci/research/speech/speechphonstudents/s_granlund
https://www.uantwerpen.be/nl/personeel/ilke-declerck/
http://www.pinguinorodriguez.cl/
http://www.fon.hum.uva.nl/paul/

	Introduction
	Preparatory work: installing software
	Praat environment and objects in Praat
	How does the Praat Objects window work?
	The link between the object window and a script
	How to read and write Praat scripts using Sublime Text

	What's a script and what's a better script
	So, what's a script? 
	How to write a good script?

	Variable usage
	Controlling the flow: jumps and loops
	Conditional jumps
	Loops
	For loops
	While loops
	Repeat loops


	Some useful functions
	Mathematical functions
	String functions

	Testing and debugging techniques
	Send stuff (variable values, results) to the Praat Info window
	Pause a script to observe a given state
	Make your script crash if behaved unexpectedly

	Navigate the bubble and beyond: objects, files, inputs & interactions
	A bit more to say about navigating the bubble
	Accessing objects outside the script
	Interacting with the user: forms; choosing files and directories
	Include other scripts and procedures

	Procedures and arrays
	Procedures: writing your own functions
	Arrays: a variable with many coexisting values

	Where to look for more information?
	Acknowledgements

