Sessmn 2 (14:00 - 18:00, Wed.): Bursting the script bubble properly
Outside the script bubble: navigating, creating and querying Praat objects; forms,

working folders and paths, selecting and creating files and directories, writing

procedures, and using other Praat scripts within scripts.

Quality control: good scripting practices; testing and debugging (printing, pausing and

exiting); good practices for long term and big projects (modularity).

Scripting challenges: writing simple scripts and procedures within scripts to manipulate

and query Praat objects; predicting the user's behaviour and act accordingly.

2.1. Outside the script bubble

Let's load a couple of files from our “companion_folder_session_2”". In particular,
these files: “00_test.wav " and “00_test.TextGrid”.

2.1.1. Navigating Praat

When using Praat, you'll always be working with objects and is paramount that

you're able to select exactly the object that you need for a given task and not any
other object.

o When using the mouse is relatively easy (for small projects) to keep track of
objects and select exactly what you need.

You won't be able to see the Objects window when working from a script. How to
do it then?

Each object in Praat can be individualized via its ID number, the object type or by
its name.

o To select an object via its ID, you can use the command selectobject, Which

requires as an argument the 1D of the object or objects you want to select. This
would look like this:

@)

selectObject: 1 (2.1)

o To select an object via its name, you can use a similar line:

selectObject: "Sound 00_test” (2.2)

o

The lines of code that we just saw work fine for our examples, but they are

useless in a real scripting scenario, and they are prone to cause problems.

= Firstly, in those lines, you need to, somehow, know the ID number of your
object or its name from before so that you can write it on your script.

= Also, if you have two objects with the exact same object type and name,

Praat will only be able to select the last one opened. Names are not
necessarily unique (the ID is!).

To solve many problems, from now onwards, assign the ID number to a

variable and then refer to that variable to select your objects.

= Open the script “01_saving_ids.Praat”, which is located in your
“companion_folder_session_2” folder, by using praat > Open Praat script....

@)

Opening files and storing ID into variables.
wav_id = Read from file: "@0_test.wav”
tgd_id = Read from file: "00_test.TextGrid”

pauseScript: "Inspect the Objects window." (2.3)

selectObject: wav_id
pauseScript: "Inspect it again.”
plusObject: tgd_id

o |In Praat, new objects are selected by default. Whenever you open or create a
new object, Praat will select it.
= |f you open or create several objects, the last one will always be selected.
Keep this in mind when writing your scripts!
© You can also access the ID number and name of an object by using the
following functions, which only require, besides the correct object being
selected, the object's type:

id_number = selected("”Sound")
name$ = selected$("Sound")

(2.4)
o Storing the name of an object is very useful when you need to use that name
later on, for example, when you are saving stimuli from an original sound, or to
create a folder with a name, etc.
o Useful functions to select and remove objects by their ID are:
= selectObject: Selects an object or several objects.
= plusObject: adds objects to the current selection.
= minusObject: removes objects from the current selection.
= removeObject: removes objects from the Object window.

o Tip 1: It's a good practice to remove objects that you finished using from the
Objects window, to keep everything tidy and also because you're just wasting
your RAM memory if you keep objects open just because (particularly if they are
large).
= gTzlere is a limit of 10,000 for the number of objects that Praat can open at the

same time.

o Tip 2: Praat never ever saves anything unless you explicitly tell it to do so. If
you're editing a TextGrid and spend 2 hours on that and your computer crashes,
all that work will be lost forever. Save often.

2.1.2. Creating and querying objects

* You can create an object in Praat by accessing a file (opening it), by creating it from
scratch or by creating it from another object.
o Opening files: We've been doing this already. Let's explore again the default
options for opening objects in Praat by looking at the Objects window,
particularly under open. For a scripting example, see the following:

wav_id = Read from file: "@0_test.wav" (2.5)

o Creating it from scratch: The objects that you can create from scratch are

clustered under New in the Objects window. For example, you can create a table
with column names and no rows (see first the function and then show script):

table_id = Create Table with column names: "my_table", @, "A B C" (2.6)

= Notice how you have to provide the arguments that you would otherwise
enter manually separated by commas.
* Let's see how this would go manually!

= Strings are entered between double quotation marks, numbers without them.
We'll see more advanced examples of this later.

o Creating it from another object: Some objects can only be created from
another object. For example:

Read from file: "@0_test.wav"”
To Pitch: 0.0, 75.0, 600

wav_id
pitch_id

2.7)

o In this case, the object Pitch can only be created from a Sound object. Notice
that the Sound object was selected by default when opened, which which
allowed Praat to create a Pitch object.

* Once you have any type of object in your Objects window, you can do whatever that

objects allows you to do, including querying it or modifying it.

o For example, for a Sound object, under Query - , you can obtain its total duration
by using Get total duration
= By the way, this isn't the safest way to query the total duration of a sound;

prefer subtracting the start to the end. Why?

o For a Pitch object, you can obtain the mean pitch by using Get mean, which

requires you to specify the time range and the type of unit of measurement.

o |insist that it is a very good idea to spend some time taking a look at the options
that each Praat object gives you, particularly for those that you use often. You'll
learn an awful lot about them by doing this and you'll also save yourself a lot of
time by not writing functions and procedures that already exist.
= Case study: Chi-square.

o Write a script that:
= (a) Opens the sample sound “00_test.wav” and TextGrid “00_test.TextGrid”
that are located in your “companion_folder_session_2” folder.
= (b) Creates a Formant Obiject for the sound object using the default settings

for the Burg method
= (c) Queries the TextGrid to find the start and end point of the word /'ka.da/

and stores these values into variables.
= (d) Measures the mean F1 and F2 values for that word in particular.

= (e) Reports these results to Praat's Info window.
o You'll need to open the objects and take a look at the options that Praat gives

you to find the tools you'll need to create the Formant (Burg) object and to query
the objects.
© Some clues:

= The TextGrid that you have has only 1 tier and that tier is an interval tier.
= Formant objects are nothing else than spectra shown as a function of time.
“Spectra” is the plural of “spectrum”.

Read from file: "00_test.TextGrid"

start = Get start point: 1, 4

end = Get end point: 1, 4

Read from file: "@@_test.wav”

To Formant (burg): 0.0, 5, 5500, 0.025, 50 (2.8)
mean_f1 = Get mean: 1, start, end, "Hertz”

mean_f2 = Get mean: 2, start, end, "Hertz"

appendInfoLine: "F1 = ", mean_f1

appendInfolLine: "F2 = ", fixed$(mean_f2, 3)

2.1.3. Forms

» Oftentimes the scripts you'll be writing will only be used by you, and if the script
serves a rather specific purpose or it isn't going to move much from hand to hand,
then it is easy to modify a couple of lines each time you want to use it again (for
example, if paths to files need to be modified).

* Many times, however, you want your script to be able to receive arguments from
users without them having to edit the script. Then is when forms become very
handy (and they'll prove even more useful later).

* Aformis a pop-up that prompts before the script actually runs, and it will show up
at the beginning regardless or where in the script you actually wrote the form.

o Conventionally, scriptors tend to write the code for forms at the beginning of
scripts, to reflect the fact that they show up at the beginning.

o Forms are capable of having text fields and other sort of input fields and buttons
so that the user can enter stuff.

* Forms can receive the following arguments (documentation here): real, positive,

integer, natural, word, sentence, text, boolean, choice & buttons, and comments. Forms look
like this:

form User’s input
comment Please enter the following information:
sentence Name:
integer Age:
choice Sex: 1 (2.9)
button Female
button Male
real Smoothing_factor: 100 (= average)
endform

* The form starts and ends with the form declaration form and endform. All the lines in
between correspond to either comments or fields that receive arguments. Firstly,
the type of field is declared (e.g., integer) and then a variable name is declared
(e.g.,Name)

o Notice that for you can enter default values, as we did for real, where by default
a value of 100 was entered. Also, a help for the user was included in brackets.

http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html

o The brackets from clues and the colons after the variable declarations disappear
when you then use the variables.

o Also, you can use capitals in the form for the variable names (unlike anywhere
else in Praat scripts), but then to access the variables you need lowercase.

Variables can be accessed later, like this:

appendInfolLine: name$

appendInfoline: age
appendInfolLine: sex, tab$, sex$

(2.10)

appendInfolLine: smoothing_factor

2.1.4. Working folders and paths

When Praat starts, it has got a default directory, which will most likely not be the
place where you have stored your script or the files that your script will try to
access.

o The location of this default directory can be revealed by calling a predefined
Praat function called shellbirectory$.

If your script has been saved and you open it in Praat using Praat > Open Praat

script. .., Praat will reset your working folder to the folder that contains the script.

o This has important consequences: if your script needs to open a specific file by
name, as we have been doing above, then the file will need to be located in the
same folder than the script.

o Alternatively, you'll have to specify a path relative to the script's location, but this
relative path needs to be known too, and it will only work if the script is loaded
properly and not just copied and pasted to a new script window.

To know the location of the new default directory, once you read a script, you can

call the predefined function: defaultdirectory$ (you don't really need to do this very

often).

o Other interesting similar predefined functions are: homedirectory$,
preferencesDirectory$ arKjtemporaryDirectory$.

One solution to this mess would certainly be to (a), provide the script along with

the files that it will have to modify; (b) ask the user to edit the script and provide a

full path to the files the script is supposed to read; or (c) to ask the user to enter the

full path into a form.

o None of these solutions are optimal, though. The first one affects the portability
of the script. The second one requires a user that knows how to edit scripts and
do it properly. And the third option is better, but a bit tiresome.

: Write a script that (a) contains a form that (b) asks the
user, separately, for a full path to the WAV file we've been using and the filename;
(c) uses that path and filename to load the WAV file into a Sound object; (d) Plays
the sound once loaded.

form User settings.

comment Please enter the following arguments:
sentence Path: /YOUR/PATH/HERE/

word Filename: 00_test.wav (2.112)
endform
Read from file: path$ + filename$
Play

* The difference between fixed or hard paths and relative paths is quite simple: the
former direct to a specific and fixed place in your computer's memory and the latter
directs to a place in the memory relative to the current working directory.

o |tis generally recommended to avoid fixed paths because it is very unlikely for
two computers to have the same file structures. A full path (in my computer) to a
script that we'll use in this session is:

Open Praat script: "/home/mauricio/talks_lectures_workshops/2016_07_06-

...08_workshop_Kent/companion_folder_session_2/efficiency/efficiency_1.praat” (2.12)

o Relative paths should always be favoured. If relative paths cannot be used, then
it is recommended to ask the user to enter a path by using a form or by making
users choose a folder or file manually.

o A path, relative to the folder where “efficiency_1.praat” is located (which became
the default folder when we loaded the previous script), could be:

Read from file: "../Q0_test.wav" (2.13)

o Notice that the “relative” bit was made explicit by using ../ for each level that
Praat has to climb or go back in order for the path to make sense. So, it climbed
a folder from the folder “efficiency”, ending up in “companion_folder_session_2”,
where the file “00_test.wav” exists and thus can be accessed.
= Just, you can climb how many folders as you want, as long as you use a

sequence of “../".
2.1.5. Selecting and creating files and directories

* Another alternative is to ask the user to choose a file or a directory directly, by
using chooseReadFile$ O chooseDirectory$. These commands will prompt a file or
directory opening window and the user will be asked to navigate to a file or
directory.

* Using these commands is not complicated:

file_name$ = chooseReadFile$: "Open a CSV file"
if file_name$ <> ""

table = Read Table from comma-separated file: file_name$
endif

(2.14)

* Allyou need to do is to assign the result of the action of choosing a file (or a
directory, if that was the case) to a string variable. That variable will contain the full
path to the file and the filename too. Then, you can do with that full path and name
whatever you want to do with it, normally opening it.

* Another useful function is chooseWritefrile$, which will prompt a saving window and
requires the user to choose where to save the object that is currently selected.

o Warning: It is your duty to save the object with an appropriate extension if you'll
be using the file outside of Praat. Also, if you select more than one object at the
same time, Praat may complain or (what's worse) will save the batch as a
“Collection” object, which can only be read by Praat.

file_name$ = chooseWriteFile$: "Save as a WAV file"”, "sound_ID.wav"
if file_name$ <> ""

Save as WAV file: file_name$
endif

(2.15)

» Each Praat object type (there are many) can be saved in different ways. Some
objects which are fairly common outside Praat (e.g., sounds and tables) can be
saved in standard formats such as WAV or AIFF, and as CSV, respectively.

o When reading or writing a file, Praat completely ignores the extension of the file
(e.g., “.wav”). But is a good idea to include them if the file will need to be read by
an external programme.

o Let's take a look at some of the options for some common objects: Sound,
TextGrid, Table, Pitch, Formant, Intensity, Spectrum, Spectrogram and KlattGrid.

* Besides opening files and saving objects, Praat can alter them.

o writeFileLine: If the file exists, it will delete all the lines that are already in that file
and then it will write the line that you specify after the function. If the file doesn't
exist, it will try to create it and then add the line that you specified. In the script
below, the file to be modified (or created) is “myFile.txt”, and the line to be added
is specified afterwards.

writeFileLine: "myFile_A.txt", "This line will be the very first one.” (2.16)
o writefFile: It does exactly the same as writeFileLine, but it doesn't add a newline
symbol at the end of the line. The newline symbol is what commoners would call

“an Enter”.
writeFile: "myFile_B.txt", "This line will also be the very first one.” (2.17)
o appendFileLine: It appends the specified line to the end of an already-existent file.

appendFilelLine: "myFile_B.txt", "This line will be appended at the end.” (2.18)

o appendFile: Does the same as appendFileLine, but without adding the newline
symbol.

appendFile: "myFile_B.txt", "And yet another line will be appended at the end.” (2.19)

o createDirectory: It creates a directory with the specified name and in the
specified path. If the directory already exists, it does nothing.

directory_name$ = "hyper_praat” (2.20)
createDirectory: directory_name$)

o deleteFile: It deletes the specified file or directory, if it exists.
deleteFile: "hyper_praat” (2.212)

deleteFile: "myFile_A.txt"

http://www.fon.hum.uva.nl/praat/manual/Types_of_objects.html

deleteFile: "myFile_B.txt"

2.1.6. Writing procedures

* Procedures are scripts within scripts. They are very similar to what in other
programming languages would be called a “function”. They can be very useful.

* The best way I've been able to come up with to explain why procedures are very
useful is to make you imagine what would you do if a function like appendInfoLine
didn't exist in Praat, but you need it anyways.

o So, let's imagine that: You'd like to print stuff to the Info window, but there is no
function to do that in Praat. Let's assume that you're also gifted in programming
and that you manage to write a very short script that, in 10 lines, manages to do
what you need: it takes a string and it prints it into the Info window.

o So now you have your own function, written by yourself, and you use it a lot,
because in several places in your script you want to, say, check the current state
of some variables.
= So there you find yourself copying those 10 lines of code every single time

you need to use your script, and quickly your script becomes repetitive,
unnecessarily big and perhaps difficult to read.

o Wouldn't it be nice if you could somehow declare those 10 lines once and then
just call it with one line whenever you need it (as you do when using
appendInfolLine)? Procedures allow you to do just that.

* Let's imagine a procedure that takes two arguments, a string and a number, and
that its duty is simply to shorten the length of your string by the number provided as
second argument and print that string to the Info window. A procedure for that could
look like this:

@dealingWithStrings: "laughlines"”, 5
@dealingWithStrings: "outguessing"”, 3
@dealingWithStrings: "loudspeaker"”, 4

2.22
procedure dealingWithStrings: .string_to_parse$, .how_short ()

.short_string$ = left$(.string_to_parse$, .how_short)
appendInfoLine: .short_string$
endproc

* The procedure is defined in the last four lines of the script. It starts with the
definition procedure and then it receives a name (dealingWithsStrings) and the name of
the variables that will receive as arguments. Then you find what the procedure does
and it closes with endproc.

* Notice that the procedure is called three times in the first three lines, and that each
call requires only one line: You write the procedure once, but you call it as many
times as you want.

* Also notice that the variables used inside the procedure were defined as (pseudo)
local variables (as opposed to global variables). This means that we can't access
those variables from outside the procedure, unless we use the following hack, in
which the name of the procedure is used before the local variable:

dealingWithStrings.short_string$ (2.23)

* Using local variables is a very good idea. If you don't use local variables, you might
end up getting yourself in trouble.

. : The script copied here does something rather silly. Its
aim is to loop through a series of numbers, decompose each of those numbers into
individual digits (e.g., 12 is decomposed into 1 and 2) and then find out whether the
individual digits can be divided without remainder by a number that is defined at the
beginning.

o As you can see, some of these tasks are carried out in a procedure, separate
from the main script. That procedure is called areTheydivisible.

o Your task: Read the script that is copied below and — without running it! — think
carefully why this script will make Praat (and perhaps your computer) crash.

o Once you think you know what's the problem, fix the script and run it. Be ready
to explain what changes you made and why do you think they solve the

problem.
start = 14
end = 30
divisor = 2

for i from start to end
@areTheyDivisible: i, divisor
endfor

procedure areTheyDivisible: number_to_parse, divide_by
number_as_string$ = string$(number_to_parse)
length_string = length(number_as_string$)
for i from 1 to length_string

(2.24)

this_digit = number(mid$(number_as_string$, i, 1))
remainder = this_digit mod divide_by
result$ = if remainder == @ then "yes"” else "no" fi
appendInfolLine: i, tab$, i, tab$, this_digit, tab$, remainder, tab$,
. result$
endfor
endproc

o Now that we know what we need to do to fix this script, let's dissect it line by line
until we fully understand it.

2.1.7. Using other Praat scripts within scripts

* Including a Praat script into another Praat script (without copying one into another,

of course) is quite simple. You basically have two options: using runscript Or include.
Let's start with runScript.
* Let's suppose that you have the following script:

FIRST PIECE OF CODE ("@3_script_being_called.Praat”):
form Enter your age and sex
comment Please fill the following field types:
integer Age: 00 (= in years)
choice Sex: 1 (2.25)
option Male
option Female
endform
writeInfolLine: "Your age is: ", age, ". Your sex is: ", sex$, "."

* This script has a simple form that asks for the age and sex of the user. Then, it
clears the Info window and writes a string with the arguments entered by the user.
* You can run that script from another script using runScript, as shown below. This
separate script runs the first one, all that is needed (in this case) is the name of the
script and the arguments, if the first script has a form.
o If the script being ran from another script hasn't got a form, you don't need to
provide the arguments after calling the script.
o Mind your paths! Only if you have opened the second script using Praat > Open
Praat Script... and if the two scripts are stored in the same place these scripts
will run well. Otherwise, you need to ensure that the paths are right.

SECOND PIECE OF CODE ("@3_script_that_calls.Praat"”):
runScript: "@3_script_being_called.Praat”, 29, "Male”

(2.26)
* Running a script using runscript is similar to calling a procedure with local
variables: Any variable assignment made in the script being called won't be
available in the script making the call.
o This is because a script being called by runscript is executed as an entirely
different and independent process.

* Now, if you need a whole script and its assignations to become available from a
calling script, you need to use include.
o The result of using include is exactly the same than if you were to copy and
paste the script or procedure that you want to include into your calling script.
o The script or procedure that has been included is ran in the same process than
the main script; they are, for all purposes, only one script.
© You can see a simple example in the following two snippets of code:

Procedure to be called ("@4_procedure_which_is_included.Proc").
procedure howLong: .string$

.this_long = length(.string$) (2.27)
writeInfolLine: .this_long
endproc

Including procedure.
include 04_procedure_which_is_included.Proc

(2.28)
Executing procedure.
@howLong: "pneumonoultramicroscopicsilicovolcanoconiosis”
. : Make the snippets of code from above work in your

computer. The files that you'll need are stored in your folder
“companion_folder_session_2”".
o Once you've managed to get these snippets of code to run, try to understand

line by line what they are doing.

10

2.2. Quality control
2.2.1. Good scripting practices

* When it comes to writing scripts, there are good scripts and bad scripts. You
definitely want to write scripts that are clear, well written, that you understand well,
etc. If you don't keep attention to these details at the beginning, then you'll find
yourself paying the price once you script starts to move from hand to hand, or when
it grows or when you need to make it interact with other scripts.

* You'll see now the guidelines that | follow when writing scripts, which have been
adapted from other similar lists, although the ordering and interpretation are mine.

* It has one clear goal: You script most have one very clear goal. The more clearly
you know what you need to do, the easier it is to divide that big challenge into
simple tasks and then write them using Praat's scripting language. If you don't know
what you're supposed to be writing, then you're not ready to start scripting.

o Avoid having more than one script in the same file (unless you're using
procedures). Use a filename that is informative and representative of your script,
and that will tell you something meaningful if you visit your script in two-month's
time.

* It's explicit: Even if your script doesn't work, even if it's ugly, even if you don't
understand half of your own script, be explicit. This means, in more practical terms,
to get used to generously comment on your scripts and to use meaningful variable
names.

o It happens very often that you go back to a script that you wrote 3 months, 1
year or many years before and you have no idea what that script was supposed
to do. This is when you thank yourself for having been a good commenter and
for using meaningful variable names.

o Let's illustrate this with a couple of examples:

z = randomInteger(2,100)
d=20
for i to z
g= i mod 3 ; what on earth is "mod"?
if q == 0 (2.29)
d=d +i
endif
endfor
writeInfolLine:d

Creating a random number. (2.30)
random_number = randomInteger(2, 100)

Defining dummy variable to add something to it later.
result = @

Iterator to assess numbers between "1" and the random number.
for number_to_test from 1 to random_number

Obtain the remainder of number_to_test when divided by "3".
remainder = number_to_test mod 3

11

Assess divisibility by 3 (it should be "0").
if remainder == 0@

If the condition is met, add the number to the dummy.
result = result + number_to_test

endif
endfor

Send final result to screen
writeInfolLine: result

* No-line-unknown rule: When writing a script do not let yourself move to the next
line of code if you don't know exactly what your current line is doing or the values
that variables are supposed to have at that particular point.

o This is less important when reading scripts, particularly if you're a beginner,
because some lines of code can be quite complicated and in long scripts it's
virtually impossible to follow the flow of information just by eyeballing. However,
using someone else's script without understanding what it does (even a single
line), can be very dangerous. Unfortunately this happens a lot!

* It's kept tidy: A script that is kept tidy is easier to read and maintain than a messy
one. Let's take another look to the bad script from above, but now without spaces
where there shouldn't be and with indentation. Still bad, but much better.

z = randomInteger (2, 100)
d=20
for i to z
g =1 mod 3
if q==20 (2.32)
d=d+1i
endif
endfor
writeInfolLine: d

o Indentation has to be used meaningfully. Normally, a process that happens
inside another will require +1 indentation. In the script above, what happens
inside the loop has been indented, and then what happens inside the conditional
jump has been indented again.

o In programming languages where indentation is not parsed as part of the
language's structure, such as Praat scripting, the use of indentation is
determined by your scripting-style preferences.
= However, where and when to use indentation should hopefully be consistent

across your script and also meaningful for you and your readers. It's up to
you whether you choose to use tab or a fixed number of spaces (normally 2
or 4) for your indentation. | prefer using 2 spaces and | suggest avoiding
tabs.

* It's efficient: Is your script doing the same thing more than once? Are you using the
same sequence of commands several times in your script? Are the choices you've
made computationally economical?

o As a rule of thumb, if you see yourself writing the same lines of code over and

over in your script, you probably need either a for loop or a procedure. Also,

12

keep in mind that, although modern computers barely complain about running
out of memory, they do have limits. Try to find efficient ways to do the same
tasks.

o . Let's take a look at three scripts stored in the folder
“efficiency”, inside your “companion_folder_session_2” folder. All of them
manage to output the exact same result, however, some do it way more
efficiently than others. Can you rank them according to efficiency?

* It's easy to expand: After you gain some experience, you'll be writing scripts that
perform very specific but commonly used tasks, and you'll want those small
snippets of code to interact. With that in mind, try to keep your scripts open to
possible expansions and contemplate separating some of the tasks in different
scripts.

* Something good, if short, twice as good*: Well, this is sort of self-explanatory.
You can compare the efficiency scripts again in case you find yourself sceptical
about this.

2.2.2. Testing and debugging

* Writing lines of code produces bugs and there is nothing you can do about that. If
we understand that bugs are going to happen regardless of our level of expertise,
then the next step is to try to minimize their impact and try to detect them and fix
them before they wreak havoc with your script.

* Some ideas that we've discussed before are already helpful to prevent bugs: use
meaningful variable names (be explicit), understand your script and keep your
scripting style tidy.

* Send stuff to Praat's Info window: When writing a script, one of the most simple
ways to test your script's current state is to send stuff to Praat's Info window.

o | would recommend that you do this often, particularly if you're a beginner.

o Failing to check the content of your variables can have catastrophic
consequences for long scripts where an error doesn't manifest until 25 lines of
code later.

o By the way, one typical source of bugs is failing to rewrite a variable name
correctly, as in the example below:

suggestive_number = 1313

remainder_2 = sugestive_number mod 2

if remainder_2 < 2 (2.32)
Do something

endif

o To send information to the Info window you can use the functions appendInfoline
and writeInfoLine, Which are identical with the exception that the latter clears the
Info window before adding the line.

1 Conversely: something bad, if long, twice as bad.

13

o Normally, you send to the Info window the current state of an iterative process,

or the result from conditional jumps, as in the script we played with when talking
about the while loop:

clearinfo

input_number = 142857142867

counter =1

appendInfolLine: "NUMBER", tab$, "VALUE"

while input_number > 5 (2.33)
appendInfoLine: counter, tab$, input_number
counter += 1
input_number = input_number / 1.25

endwhile

o : Go to your “companion_folder_session_2” folder
and open the script “05_something_smells_fishy.praat” in Sublime Text, and
then run it using Praat. The script will crash. Praat will give you a report,
including the number of the line where there is a problem. To make things a little
bit harder, the script isn't commented or indented.
= Use writelnfoLine and/or appendinfoLine and your common sense to find the
bugs.

= Fix the script until it works.

= Leave an inline comment in your script (using “;") to remind you of each bug
you found.

This script creates 100 random integers and adds them together one

after the other. It also divides the result of that addition by the
randomly generated number. At each cycle of the for loop, a string

is sent to the Praat Info window, which contains: (a) the iterator

value, (b) the random value generated, (c) the partial sum, (d) the
result of the division. Each line should look something like this:

> 2 47 95 2.021276595744681

H o H HH R H

maximum_value = 100 (2.34)
dummy_variable = .0
for i from I to maximum_value
random_value = randomInteger(@,50)
dummy_variable = summy_variable + random_value
division_result = dummy_variable / random_value
appendInfolLine: i, tab$, random_value, tab $, dummy_variable, tab$,
. division_results
endfor

maximum_value = 100
dummy_variable = @ ; Deleted "." before digit.
for i from 1 to maximum_value ; Corrected "from I".
All below indented.
random_value = randomInteger(0,50)
dummy_variable = dummy_variable + random_value ; Corrected "summy...".
division_result = dummy_variable / random_value
appendInfolLine: i, tab$, random_value, tab$, dummy_variable, tab$,
. division_result ; corrected "tab $" and "division_results”

(2.35)

endfor

14

* Pause a script to observe a given state: Another testing tool, particularly useful to
explore the current selection in your Objects window, but also to assert the current
stage of development of your script, is to use pauses.

o The function you'll need is pauseScript (you might also see pause in old scripts).
This function pauses the execution of your script momentarily and prompts a
message which is defined with the function.

variable = 1313

pauseScript: "Variable equals ", string$(variable), ".", newline$
variable = variable - (variable / 2)
pauseScript: "Now, variable equals "

' (2.36)

n o n

, string$(variable), ".", newline$

o Avery very typical bug in Praat is to try to execute a command for an object
different from the one selected in the Objects window. To prevent this problem,
inspect your script thoroughly using pauses so that you know exactly what is
selected at what point.

* Make your script crash if behaved unexpectedly: Whenever your script receives
arguments from outside the script itself (be it from a user or from a file, etc.), there
is a risk that the information that the script receives is different from the information
it expects.

o For example, you might have a script that requires the user to select a file.
Users can choose to select a file or not, so it is perfectly possible that they
choose none.

o If that happens, instead of having your script crashing embarrassingly and with a
lot of noise and error messages, it would be better to take that possibility into
account and have your script commit suicide gracefully by using exitScript and a
message to the user explaining the problem:

file_name$ = chooseReadFile$: "Open a CSV file"
if file_name$ <> ""
table = Read Table from comma-separated file: file_name$
else
exitScript: "No file was selected."”, newline$
endif

(2.37)

o You can do the same with variables from forms. For example, if you need your
user to enter a value within a range, it is convenient for you to check that that
condition has been met before running the script. You can evaluate that
information and terminate the script if there is a problem, and you can let the
user know what the problem was in the message contained in the exitScript
function.

2.2.3. Good practices for long term and big projects
» Itis difficult to give specific guidelines for long term and big projects, particularly

because they can be very different from each other. For example, to which extent
will scripts and files be shared can vary widely. Still, here | go, in no particular order:

15

* Plan carefully:
o Visualize your gigantic task and plan how to divide it into smaller manageable
pieces.
o Make your pieces follow a logic structure and a work flow. For example,
separate extracting data from analysing data.

* Adopt modularity:

o Beginners tend to be afraid of modularity, because it demands an additional
level of abstraction when writing a script and because it feels as if you're loosing
some control over your scripts.

o Modularity, however, is essential if you plan to undertake a large project such as
the data extraction and analysis for a production study. If you need too many
words to describe what your script does, then you definitely can split it into
several pieces.

o Use several scripts or external procedures to break your script apart. If you're
using the same lines of code more than once, then they should constitute a
procedure and you'll reduce those lines to 1 call.

o Eventually, when you get really good at this, you'll start developing tools that
you'll use all the time. You can see several examples of this here:
http://cpran.net/plugins/

* Define scripting standards and stick to them:

o Whether you'll be working alone or with more people, define scripting standards
and stick to them.

o Some people prefer indenting with tabs, other with spaces. Some prefer longer
but clearer variable names, other people prefer shorter but more obscure
names. Some programmers prefer underscores between words, other camel
case.

* Use abundant commenting: Get used to comment your own scripts thoroughly.
You shouldn't be surprised if you have to come back to your own scripts many times
during long periods of time (months or even years). You'll be very thankful to your
old self if you add good comments that make it easier to understand how your script
works.

o Use comments to head sections and subsections.
o Comment those places of your script that are difficult to understand.
o Keep your comments short and sweet (clarity is the goal).

Use line comments (#) and inline comments (;).

(@]

* Have a tidy file structure:

o Take into account that paths can be a problem for scripts. Try to write flexible
scripts that allow you to work efficiently.

o File structure changes are typical in big projects: Make it easier to change paths
and avoid hard paths (prefer relative paths).

o Keep your scripts separate from other type of data.

o Make your file structure to reflect your project's structure (use numbering in your
folder names; do the same with scripts that deal with different stages of a
process).

16

http://cpran.net/plugins/

* Back-up often:
o Not only of your current files, but also of previous versions of scripts and other
documents that are iteratively modified.

. : Think during some minutes about your next big study
that will involve using Praat. If you haven't got one, come up with one that you'd be
interested in conducting.

o Divide that study into stages and be explicit about which type of scripts you'd
need for each stage.

o Think about how you could have a modular approach to programming that
project.

o Also, think about a good file structure that would allow you to keep things tidy
but also that will help you to handle hard and relative paths.

o Let's talk about that.

2.3. Scripting challenges

. : Let's write a challenging script from scratch. You will
build a script that will use Praat's SpeechSynthesizer to synthesize an English CVC
word (e.g., “hat”, “had”, “got”, “pan”), segments and annotates that word
automatically into a TextGrid, obtains mean F1, F2 and F3 values from the vowel,
prints the results and a phonetic transcription for the whole word into Praat's Info
window, and saves the same lines into a “.txt” file outside your script.

o The script will have to ask the user for the word that the user wants to
synthesize. In order to do that, you'll need to use a form.
= Test that the word entered by the user is three characters long and that the

middle segment is a vowel. If the string doesn't meet the required
characteristics, make the script crash gracefully and send feedback to the
user as to why the script crashed.

o You'll need to take a look at New > Sound > Create SpeechSynthesizer. Use
“English_rp” and voice “m1”. The synthesizer will provide you with the TextGrid
and the phonetic transcription.

o You'll have to navigate between objects in your script by resorting to their unique
ID number, and to do that you'll have to store that ID somehow into variables.

o Remember to extract the formant values from a Formant object (let's use the
Burg method) and not using Praat's editor or manual analyses.

o You'll have to use at least 1 procedure in your script. The procedure must be
stored outside your script and it has to be included into your main script via
include.

17

http://www.fon.hum.uva.nl/praat/manual/SpeechSynthesizer.html

